cho 100 điểm trên mặt phẳng sao cho trong bất kì bốn điểm nào cũng có ít nhất 3 điểm thẳng hàng. Chứng minh rằng ta có thể bỏ đi 1 điểm trong 100 điểm đó để 99 điểm còn lại cũng thuộc 1 đường thẳng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét d là đường thẳng đi qua ít nhất 3 điểm trong 100 điểm. Giả sử có nhiều hơn 1 điểm nằm ngoài d. Xét 2 điểm A, B nằm ngoài d và 2 điểm C, D thuộc d và C, D không thuộc AB. Khi đó 4 điểm A, B, C, D không thỏa mãn đầu bài. Vậy có nhiều nhất 1 điểm nằm ngoài d. Bỏ điểm đó đi ta có 99 điểm thẳng hàng
k mk nhé
Từ 2 điểm A kẻ đường tròn (A;1) và từ điểm B nằm ngoài (A;1) kẻ đường tròn (B;1). Giả sử có một điểm C nằm ngoài cả hai đường tròn thì CA>1, CB>1 và AB=3>1 (vô lí)
Vậy tất cả các điểm đều nằm trong 2 đường tròn này nên theo nguyên lí Dirichlet có 50 điểm nằm trong cùng một đường tròn bán kính 1
Xét d là đường thẳng đi qua ít nhất 3 điểm trong 100 điểm. Giả sử có nhiều hơn 1 điểm nằm ngoài d. Xét 2 điểm A, B nằm ngoài d và 2 điểm C, D thuộc d và C, D không thuộc AB. Khi đó 4 điểm A, B, C, D không thỏa mãn đầu bài. Vậy có nhiều nhất 1 điểm nằm ngoài d. Bỏ điểm đó đi ta có 99 điểm thẳng hàng