Tìm số hữu tỉ x biết
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}+\frac{x+1}{13}+\frac{x+1}{14}=0\)
\(=>\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)=0\)
\(=>\left(x+1\right)=0\)
\(=>x=-1\)
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
nên x + 1 = 0 => x = -1
Vậy x = -1
b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(1+\frac{x+4}{2000}+1+\frac{x+3}{2001}=1+\frac{x+2}{2002}+1+\frac{x+1}{2003}\)
\(\frac{2004+x}{2000}+\frac{2004+x}{2001}=\frac{2004+x}{2002}+\frac{2004+x}{2003}\)
\(\frac{2004+x}{2000}+\frac{2004+x}{2001}-\frac{2004+x}{2002}-\frac{2004+x}{2003}=0\)
\(\left(2004+x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\)
nên 2004 + x = 0 => x = -2004
Vậy x = -2004
=))
2.
a) Ta có:
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right)\left(\frac{1}{13}+\frac{1}{14}\right)\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)nên \(x+1=0\Leftrightarrow x=-1\)
Vậy x = -1
b) Ta có:
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}\right)=\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{2003}\right)\)
Vì \(\frac{1}{2000}+\frac{1}{2001}\ne\frac{1}{2002}+\frac{1}{2003}\)nên \(x+2004=0\Leftrightarrow x=-2004\)
Vậy, x = -2004
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}+\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
\(\Rightarrow x+1=0\).Do \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\ne0\)
\(\Rightarrow x=-1\)
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=0-1\)
\(\Rightarrow x=-1\)
Vậy x=-1
a) (x+1)/10+(x+1)/11+(x+1)/12=(x+1)/13+(x+1)/14
(x+1)/10+(x+1)/11+(x+1)/12-(x+1)/13-(x+1)/14=0
(x+1)(1/10+1/11+1/12-1/13-1/14)=0 (1)
thay 1/10>1/13
1/11>1/14
1/12>0
suy ra 1/10+1/11+1/12>1/13+1/14
suy ra 1/10+1/11+1/12-1/13-1/14>0
suy ra 1/10+1/11+1/12-1/13-1/14 khac 0
nền (1) tương dương x+1=0
tương dương x=-1
Vay x=-1
b) (x+4)/2000+(x+3)/2001=(x+2)/2002+(x+1)/2003
(x+4)/2000+(x+3)/2001-(x+2)/2002-(x+1)/2003=0
[(x+4)/2000+1]+[(x+3)/2001+1]-[(x+2)/2002+1]-[(x+1)/2003+1]=0
(x+2004)/2000+(x+2004)/2001-(x+2004)/2002-(x+2004)/2003=0
(x+2004)(1/2000+1/2001-1/2002/1/2003)=0 (2)
thay 1/2000>1/2002
1/2001>1/2003
suy ra 1/2000+1/2001>1/2002+1/2003
suy ra 1/2000+1/2001-1/2002-1/2003>0
suy ra 1/2000+1/2001-1/2002-1/2003 khac 0
nen (2) tuong duong x+2004=0
tuong duong x=-2004
Vay x=-2004
ttttttttttttttttttttttt