K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

a, Để \(n\in Z\)

Ta có : \(3n+2⋮2n-1\)

\(6n-3n+2⋮2n-1\)

\(3\left(2n-1\right)+2⋮2n-1\)

Vì 2 \(⋮\)2n-1 hay 2n-1\(\in\)Ư'(2)={1;-1;-2;2}

Ta có bảng 

2n-1-112-2
2n023-1
n013/2-1/2

Vậy n = {0;1}

29 tháng 7 2019

\(b,\frac{n+3}{n-7}=\frac{n-7+10}{n-7}=1+\frac{10}{n-7}\)

=> 10 chia hết cho n - 7 

=> n - 7 thuộc Ư\((10)\)

=> n - 7 \(\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Lập bảng :

n - 71-12-25-510-10
n869512217-3
9 tháng 11 2016

a. 3n+17= 3(n+2) + 11

3n+17 chia hết cho n+2 khi 11 chia hết cho n+2 suy ra n+2 là ước của 11= (1;11) xét 2 trường hợp 

các bài dưới tương tự nhé

9 tháng 11 2016

3n+17:(n+2)=3 dư 11

Nếu chia hết thì 11:(n+2), tự giải thích

n+2 là Ư của 11 gồm 1;11;-1;-11

n+2=1=>n=-1

n+2=>11=>n=9

n+2=.-1=>n=-3

n+2=-11=>n=-13

Mình giải hết nghiệm còn n là số tự nhiên nên lấy  nghiệm là 9 

6 tháng 7 2021

Chắc là A chia hết cho 121 nhỉ.

Thật vậy, nếu A chia 11 mà 11 là số nguyên tố 

Suy ra 17m+16n chia hết cho 11 

hoặc  16m+17n  chia hết cho 11 

Mà (17m+16n)+(16m+17n)=11(3m+3n) chia hết cho 11 

Suy ra 17m+16n và 16m+17n đều chia hết cho 11

Suy ra A chia hết cho 121 

#lowlowod

23 tháng 3 2020

20n - 3n chia hết cho n ; n ∈ N

17n chia hết cho n

n ∈ Ư (17) = {1; 17}

Vậy n = 1; 17

Có 20n-3n chia hết cho n

=>n(20-3) chia hết cho n

=>n.17 chia hết cho n

Đến đây mk thấy chẳng có lí do gì để n thuộc Ư(17) cả mk ko chắc lắm nhưng đến đó theo mk thì n thuộc mọi số

KB với mk nha