K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

Áp dụng bất đẳng thức Cô - si, ta có:

 \(a\sqrt{b-1}=a\sqrt{\left(b-1\right).1}\le a.\frac{b-1+1}{2}=\frac{ab}{2}\)(1)

\(b\sqrt{a-1}=b\sqrt{\left(a-1\right).1}\le b.\frac{a-1+1}{2}=\frac{ab}{2}\)(2)

Từ (1) và (2) suy ra \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)

\(\Rightarrow\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}\ge\frac{6}{ab}\)(Đẳng thức xảy ra khi a = b = 2)

\(VT=\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\frac{6}{ab}+\sqrt{3ab+4}\)

\(=\frac{18}{3ab}+\sqrt{3ab+4}\)

Đặt \(t=\sqrt{3ab+4}\Rightarrow3ab=t^2-4\). Khi đó\(VT\ge\frac{18}{t^2-4}+t=\frac{18}{\left(t+2\right)\left(t-2\right)}+\frac{3}{4}\left(t-2\right)\)

\(+\frac{1}{4}\left(t+2\right)+1\ge3\sqrt[3]{18.\frac{3}{4}.\frac{1}{4}}+1=\frac{11}{2}\)

Đẳng thức xảy ra khi t = 4 hay a = b = 2

25 tháng 4 2020

Áp dụng BĐT AM-GM ta có:

\(\sqrt{b-1}=\sqrt{1\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a\sqrt{b-1}\le\frac{ab}{2}\)

Tương tự với \(b\sqrt{a-1}\)ta được

\(\frac{6}{a\sqrt{b-1}+b\sqrt{a-1}}+\sqrt{3ab+4}\ge\frac{6}{ab}+\sqrt{3ab+4}=\frac{18}{3ab}+\sqrt{3ab+4}\)

Vậy ta cần chứng minh

\(\frac{18}{3ab}+\sqrt{3ab+4}\ge\frac{11}{2}\)

Vì a,b đều lớn hơn 1 nên ta đặt \(t=\sqrt{3ab+4}>0\)khi đó bđt cần chứng minh trở thành

\(\frac{18}{t^2-4}+t\ge\frac{11}{2}\)

<=> \(\frac{\left(2t+5\right)\left(t-4\right)^2}{t^2-4}\ge0\)

Vậy t>=4

BĐT xảy ra khi a=b=1

12 tháng 12 2017

Từ giả thiết ta suy ra

\(\dfrac{1}{a}+\dfrac{1}{b}+c=3\)

Đặt \(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};c\right)\Rightarrow x+y+z=3\)

\(VT=\dfrac{1}{\sqrt{xy+x+y}}+\dfrac{1}{\sqrt{yz+y+z}}+\dfrac{1}{\sqrt{xz+x+z}}\)

Ta chứng minh: \(\left(x+1+y\right)^2\ge3\left(xy+x+y\right)\)(Luôn đúng)

\(\Rightarrow VT\ge\dfrac{\sqrt{3}}{x+y+1}+\dfrac{\sqrt{3}}{y+z+1}+\dfrac{\sqrt{3}}{z+x+1}\ge\dfrac{9\sqrt{3}}{2\left(x+y+z\right)+3}=\sqrt{3}\)

3 tháng 8 2020

1+1+1+1+1+2=7

3 tháng 8 2020

đặt \(\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}=P\)

phương pháp khảo sát hàm đặc trưng rất hữu hiệu cho những bài bất đẳng thức đối xứng

bài toán cho f(x)+f(y)-f(z) >= A

tìm min, max của S-g(x)+g(y)+g(z)

*nháp

điều kiện x,y,z thuộc D, dự đoán dấu bằng xảy ra khi x=y=z=\(\alpha\). Khảo sát hàm đặc trưng h(t)-g(t)-mf(t) với m=\(\frac{g'\left(\alpha\right)}{f'\left(\alpha\right)}\)sau khi đã tìm được m chỉ cần xét đạo hàm h(t) nữa là xong

ta khảo sát hàm \(f\left(x\right)=\sqrt{x^2+\frac{1}{x^2}}-mx\)

để hàm số có cực tiểu thì f(x)=0 \(\Leftrightarrow\frac{x^4-1}{x^3\sqrt{x^2+\frac{1}{x^2}}}-m=0\)nhận thấy "=" ở x=\(\frac{1}{3}\)nên m=\(\frac{80}{-\sqrt{82}}\)

xét hàm số đại diện f(t)=\(\sqrt{t^2+\frac{1}{t^2}}-\frac{80}{\sqrt{82}}t\)trên (0;1) có f(t)\(\ge f\left(\frac{1}{3}\right)=\frac{162}{3\sqrt{82}}\)

vậy thì \(P\ge-\frac{80}{\sqrt{82}}\left(x+y+z\right)+\frac{162}{\sqrt{82}}=\sqrt{82}\)

bài toán được chứng minh xong

17 tháng 2 2022

Đặt: \(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}\), khi đó ta được:

\(A^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)

\(+2\cdot\sqrt{\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)}+2\cdot\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)}+2\cdot\sqrt{\left(c^2+\frac{1}{c^2}\right)\left(a^2+\frac{1}{a^2}\right)}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\sqrt{\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)}\ge\sqrt{\left(ab+\frac{1}{ab}\right)^2}=ab+\frac{1}{ab}\)

\(\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)}\ge\sqrt{\left(bc-\frac{1}{bc}\right)^2}=bc+\frac{1}{bc}\)

\(\sqrt{\left(c^2+\frac{1}{c^2}\right)\left(a^2+\frac{1}{a^2}\right)}\ge\sqrt{\left(ca+\frac{1}{ca}\right)^2}=ca+\frac{1}{ca}\)

Do đó ta có:

\(A^2\ge a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(ab+bc+ca+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2=82\)

Hay \(A\ge\sqrt{82}\), vậy bất đẳng thức được chứng minh.

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)

28 tháng 2 2017

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c