Cho hình chóp tứ giác đều S ABCD . có cạnh đáy bằng 2a . Góc giữa đường thẳng AC và mặt phẳng ( SBC) bằng 30 . Thể tích của khối chóp S ABCD bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Gọi M là trung điểm của BC, suy ra O M ⊥ B C .
Ta có S B C ; A B C D ^ = S M O ^ = 45 o .
Ta có
A C 2 = A B 2 + B C 2 = 4 a 2 ⇒ A B = B C = a 2 . O M = 1 2 A B = a 2 2 ⇒ S O = a 2 2 . tan 45 o = a 2 2 .
Vậy V S . A B C D = 1 3 . S O . S A B C D = 1 3 . a 2 2 . a 2 2 = 2 a 3 3 .
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Chọn B.
H là trung điểm của AD ;K là trung điểm của BC
Ta có
SH = KH.tan600 = 2 a 3 suy ra
Đáp án D
Dễ thấy
Lại có ∆SAC vuông tại A
=> AC = SA =
Vậy VS.ABCD =
Đáp án D
Vì S A ⊥ ( A B C D ) B C ⊥ A B ⇒ B C ⊥ ( S A B ) ⇒ S B C ; A B C D ^ = S B A ^
Tam giác SAB vuông tại A, có tan S B A ^ = S A A B ⇒ S A = 2 a . tan 30 ° = 2 a 3
Thể tích khối chóp S.ABCD là
V
=
1
3
S
A
.
S
A
B
C
D
=
1
3
2
a
3
4
a
2
=
8
a
3
2
9
Vậy tỉ số
3
V
a
3
=
24
a
3
3
9
:
a
3
=
8
3
3
Chọn C
Gọi O là tâm của hình vuông ABCD.
Góc giữa cạnh bên (SAB) và mặt đáy là góc S N O ^ = 60 o
Xét tam giác SNO, ta có SO = NO tan600 = a 3
Lại có M là trung điểm của SD nên:
N là trung điểm của CD nên S ∆ A C N = 1 4 S A B C D = 1 4 4 a 2 = a 2
Do đó, thể tích khối MACN là
Đáp án A
Phương pháp: Xác định góc giữa hai mặt phẳng bằng cách xác định góc giữa hai đường thẳng lần lượt vuông góc với giao tuyến.
Cách giải:
Kẻ IH ⊥ CD ta có:
Ta có:
Gọi E là trung điểm của AB => EC = AD = 2a
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\) \(\Rightarrow SO\perp BC\)
Gọi M là trung điểm BC \(\Rightarrow OM\perp BC\)
\(\Rightarrow BC\perp\left(SOM\right)\) \(\Rightarrow\left(SBC\right)\perp\left(SOM\right)\)
Trong tam giác vuông SOM, kẻ \(OH\perp SM\)
Do SM là giao tuyến (SOM) và (SBC) \(\Rightarrow OH\perp\left(SBC\right)\)
\(\Rightarrow CH\) là hình chiếu vuông góc của OC (hay AC) lên (SBC)
\(\Rightarrow\widehat{OCH}\) là góc giữa AC và (SBC)
\(\Rightarrow\widehat{OCH}=30^0\)
\(OC=\dfrac{1}{2}AC=a\sqrt{2}\) \(\Rightarrow OH=OC.sin30^0=\dfrac{a\sqrt{2}}{2}\)
Hệ thức lượng:
\(\dfrac{1}{OH^2}=\dfrac{1}{SO^2}+\dfrac{1}{OM^2}=\dfrac{1}{SO^2}+\dfrac{4}{AB^2}\Rightarrow SO=a\)
\(V=\dfrac{1}{3}SO.AB^2=\dfrac{4a^3}{3}\)