K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

vào tcn của tui ấn vào Thông kê hỏi đáp kéo xuống

14 tháng 5 2018

là thế nào bạn ơi

23 tháng 2 2019

\(a+b=4ab\le\left(a+b\right)^2\)

\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}=\frac{a^2}{4b^2a+a}+\frac{b^2}{4a^2b+b}\)

\(\ge\frac{\left(a+b\right)^2}{4ab\left(a+b\right)+\left(a+b\right)}=\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)^2+\left(a+b\right)^2}=\frac{1}{2}\)

\("="\Leftrightarrow a=b=\frac{1}{2}\)

23 tháng 2 2019

Cảm ơn bạn nhé.

27 tháng 6 2020

\(a+b=4ab\Rightarrow\frac{1}{a}+\frac{1}{b}=4\Rightarrow4\ge\frac{4}{a+b}\Rightarrow a+b\ge1\)

\(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}=\frac{a\left(4b^2+1\right)-4ab^2}{4b^2+1}+\frac{b\left(4a^2+1\right)-4a^2b}{4a^2+1}\)

\(=a-\frac{4ab^2}{4b^2+1}+b-\frac{4a^2b}{4a^2+1}\)

\(=a+b-\left(\frac{ab^2}{4b^2+1}+\frac{4a^2b}{4a^2+1}\right)\)

\(\ge a+b-\left(\frac{4ab^2}{4b}+\frac{4a^2b}{4a}\right)=a+b-2ab\)

Ta có: \(\left(a+b\right)^2\ge4ab\Rightarrow-\frac{\left(a+b\right)^2}{2}\le-2ab\)

\(\Rightarrow a+b-2ab\ge a+b-\frac{\left(a+b\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)

\("="\Leftrightarrow a=b=\frac{1}{2}\)

5 tháng 10 2019

@Nguyễn Việt Lâm

5 tháng 10 2019

@Vũ Minh Tuấn

11 tháng 5 2018

Từ \(a+b=4ab\Leftrightarrow\frac{1}{a}+\frac{1}{b}=4\)

\(\left(\frac{1}{a};\frac{1}{b}\right)\rightarrow\left(x;y\right)\)\(\Rightarrow\hept{\begin{cases}x+y=4\\\frac{x^2}{4y+x^2y}+\frac{y^2}{4x+xy^2}\ge\frac{1}{2}\end{cases}}\)

C-S: \(VT\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy\left(x+y\right)}\)\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+\left(x+y\right)\cdot\frac{\left(x+y\right)^2}{4}}=\frac{1}{2}\)

3 tháng 2 2021

Ta có: \(\frac{a}{1+4b^2}=\frac{a\left(1+4b^2\right)-4ab^2}{1+4b^2}=a-\frac{4ab^2}{1+4b^2}\ge a-\frac{4ab^2}{2\sqrt{4b^2.1}}=a-\frac{2ab^2}{2b}=a-ab\)(bđt cosi)

CMTT: \(\frac{b}{1+4a^2}\ge b-ab\)

=> P \(\ge a+b-2ab=4ab-2ab=2ab\)

Mặt khác ta có: \(a+b\ge2\sqrt{ab}\)(cosi)

=> \(4ab\ge2\sqrt{ab}\) <=> \(2ab\ge\sqrt{ab}\)<=> \(4a^2b^2-ab\ge0\) <=> \(ab\left(4ab-1\right)\ge0\)

<=> \(\orbr{\begin{cases}ab\le0\left(loại\right)\\ab\ge\frac{1}{4}\end{cases}}\)(vì a,b là số thực dương)

=> P \(\ge2\cdot\frac{1}{4}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a = b = 1/2

Vậy MinP = 1/2 <=> a = b= 1/2

3 tháng 2 2021

Ta có: \(a+b=4ab\le\left(a+b\right)^2\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)-1\right]\ge0\)

Mà \(a+b>0\Rightarrow a+b\ge1\)

Áp dụng BĐT Cô-si, ta có: \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}=\left(a-\frac{4ab^2}{1+4b^2}\right)+\left(b-\frac{4a^2b}{1+4a^2}\right)\)\(\ge\left(a-\frac{4ab^2}{4b}\right)+\left(b-\frac{4a^2b}{4a}\right)=\left(a+b\right)-2ab=\left(a+b\right)-\frac{a+b}{2}=\frac{a+b}{2}\ge\frac{1}{2}\)

Đẳng thức xảy ra khi a = b = 1/2