Phương pháp 4. Bình phương hai vế để làm mất căn
a \(\sqrt{2x-3}=x-3\)
b \(\sqrt{10-x}+\sqrt{x+3}=5\)
c \(\sqrt{x+3}-\sqrt{x-4}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: $x\geq 0; y\geq 1$
PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:
$\sqrt{x}-2=\sqrt{y-1}-3=0$
$\Leftrightarrow x=4; y=10$
b.
ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$
$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$
$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
b. Tự đặt đk
\(x^{^2}+5\sqrt{x-3}=21\\\Leftrightarrow x^{^2}-9+5\sqrt{x-3}=12 \)
Đặt \(a=\sqrt{x-3}\) \(\left(a\ge0\right)\) Phương trình trở thành:
\(a^{^2}\left(a^{^2}+6\right)+5a=12\\ \Leftrightarrow a^{^4}+6a^{^2}+5a-12=0\\ \Leftrightarrow a^{^4}-a^{^3}+a^{^3}-a^{^2}+7a^{^2}-7a+12a-12=0\\ \Leftrightarrow\left(a-1\right)\left(a^{^3}+a^{^2}+7a+12\right)=0\\ \Leftrightarrow a=1\left(tmdk\right)\)
Ta có: vì \(a\ge0\) nên \(a^{^3}+a^{^2}+7a+12\ne0\)
Với a = 1 ta có x=4 (tmdk)
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)
\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)
a) ĐK: \(x\ge3\)
PT \(\Leftrightarrow\sqrt{\left(x-3\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+1}-\sqrt{\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-3}-1\right)+\sqrt{x+1}\left(1-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+1}\right)\left(\sqrt{x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+1}\\\sqrt{x-3}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=x+1\\x-3=1\end{matrix}\right.\) \(\Leftrightarrow x=4\) (Thỏa mãn)
Vậy ...
a) \(\sqrt{2x-3}=x-3\) (ĐK: \(x\ge\dfrac{3}{2}\))
<=> \(\left\{{}\begin{matrix}x\ge3\\2x-3=\left(x-3\right)^2\left(1\right)\end{matrix}\right.\)
(1) <=> \(2x-3=x^2-6x+9\)
<=> \(x^2-8x+12=0\)
<=> (x-2)(x-6) = 0 <=> \(\left[{}\begin{matrix}x=2\left(l\right)\\x=6\left(c\right)\end{matrix}\right.\)
KL: Phương trình có nghiệm duy nhất x = 6
b) \(\sqrt{10-x}+\sqrt{x+3}=5\) (ĐK: \(-3\le x\le10\))
<=> \(\left(\sqrt{10-x}+\sqrt{x+3}\right)^2=25\)
<=> \(10-x+x+3+2\sqrt{\left(10-x\right)\left(x+3\right)}=25\)
<=> \(\sqrt{\left(10-x\right)\left(x+3\right)}=6\)
<=> (10-x)(x+3) = 36
<=> 7x - x2 + 30 = 36
<=> x2 -7x + 6 = 0
<=> (x-1)(x-6) = 0
<=> \(\left[{}\begin{matrix}x=1\left(c\right)\\x=6\left(c\right)\end{matrix}\right.\)
KL: Phương trình có nghiệm S = {1;6}
c) \(\sqrt{x+3}-\sqrt{x-4}=1\) (ĐK: \(x\ge4\))
<=> \(\sqrt{x+3}=\sqrt{x-4}+1\)
<=> \(x+3=x-4+1+2\sqrt{x-4}\)
<=> \(\sqrt{x-4}=3\)
<=> x-4 = 9 <=> x = 13 (c)
KL: Phương trình có nghiệm duy nhất x = 13
a) ĐK: `x≥3`
`\sqrt(2x-3)=x-3`
`<=>2x-3=(x-3)^2`
`<=>2x-3=x^2-6x+9`
`<=>x^2-8x+12=0`
`<=>` \(\left[{}\begin{matrix}x=6\left(TM\right)\\x=2\left(L\right)\end{matrix}\right.\)
Vậy `x=2`.
b) ĐK: `-3<=x<=10`
`\sqrt(10-x)+\sqrt(x-3)=5`
`<=>10-x+x-3+2\sqrt((10-x)(x-3))=25`
`<=>2\sqrt((10-x)(x-3))=18`
`<=>\sqrt((10-x)(x-3))=9`
`<=>(10-x)(x-3)=81`
`<=>-x^2+13x-30=81`
`<=>x^2-13x+111=0` (VN)