cho tam giác ABC có 3 góc nhọn ( AB < AC ) trên cạnh AC lấy điểm M sao cho AB = AM gọi AD là tia phân giác của góc BAC (D thuộc BC ) . từ D kẻ DI vuông góc với AB , DK vuông góc với AC ( I thuộc AB , K thuộc AC ).trên tia đối của tia AB lấy điểm P sao cho A là trung điểm của PI. CM: AD song song với PK .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
nên \(\widehat{ABD}=\widehat{AMD}\)
c: Xét ΔAID vuông tại I và ΔAKD vuông tại K có
AD chung
\(\widehat{IAD}=\widehat{KAD}\)
Do đó: ΔAID=ΔAKD
Suy ra: AI=AK
=>BI=KM
a: Xét ΔADK và ΔACK có
AD=AC
góc DAK=góc CAK
AK chung
=>ΔADK=ΔACK
=>DK=CK
b: ΔADC cân tại A
mà AM là phân giác
nên AM vuông góc DC
=>AM//HB
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
cần cm IB=KM từ đó có AI=AK . suy ra tgAPK cân tại A. suy ra góc AKP=gocsIAD. từ đó có dpcm