Bài 1 : Chứng minh rằng :2222^5555 + 5555^2222 chia hết cho 7
Bài 2 :Tìm dư phép chia 5^70 + 7^50 cho 12
Giiusp mk vs nha! Thanks các bn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2222+4 chia hết cho 7=>2222=-4(mod 7)=>22225555 = (-4)5555 (mod 7)
5555-4 chia hết cho 7 => 5555=4(mod 7)=>55552222 =42222 (mod 7)
=>22225555 =55552222 = (-4)5555 +42222 (mod 7)
Mà 42222 =(-4)2222 => (-4)5555 +42222 = (-4)2222 + 43333 x 42222
=(-4)2222 x 43333 - (-4)2222 = (-4)2222(43333 -1 )=43 -1(mod 7) (1)
Ta lại có: 43 =1(mod 7)=>43 -1=63 chia hết cho 7 =>43 -1=0(mod 7) (2)
Nên (-4)5555 +42222 = 0(mod 7)
Từ (1) và (2) =>22225555 +55552222 chia hết cho 7
2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7)
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7)
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm
Ta có 2222 + 4 \(⋮\) 7 => 2222 ≡ - 4 (mod 7) => 22225555 ≡ (- 4)5555(mod 7)
5555 - 4 \(⋮\)7 => 5555 ≡ 4 (mod 7) => 55552222 ≡ 42222 (mod 7)
=> 22225555 + 55552222 ≡ (- 4)5555 + 42222 (mod 7)
Mà 42222 = (-4)2222 => (- 4)5555 + 42222 = (-4)2222. 43333 + 42222
= (-4)2222. 43333 - (- 4)2222 = (-4)2222(43333 - 1) ≡ (43) - 1(mod 7) (1)
Ta lại có : 43 ≡ 1(mod 7) => 43 - 1= 63 7 => 43 - 1 ≡ 0 (mod 7) (2)
Nên (- 4)5555 + 42222 ≡ 0 (mod 7)
Từ (1) và (2) => 22225555 + 55552222 chia hết cho 7.
2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7)
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7)
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm
Ta có:2222 chia 7 dư 3
=>2222 đồng dư với -4(mod 7)
=>2222-(-4) chia hết cho 7
=>2226 chia hết cho 7
=>đpcm
a, Ta có : 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13)
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13)
Cộng lại ta có:
222^333 + 333^222 ≡ 0 (mod 13) đpcm
b, 2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7)
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7)
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm
( tick đúng cho mink nha)
Ta có: 2222 đồng dư với 3(mod 7)
=> 22222 đồng dư với 32(mod 7)
=> 22222 đồng dư với 9(mod 7)
=> 22222 đồng dư với 2(mod 7)
=> (22222)3 đồng dư với 23(mod 7)
=> 22226 đồng dư với 8(mod 7)
=> 22226 đồng dư với 1(mod 7)
=> (22226)925 đồng dư với 1925(mod 7)
=> 22225550 đồng dư với 1925(mod 7)
Vì 22222 đồng dư với 2(mod 7)
=>(22222)2 đồng dư với 22(mod 7)
=>22224 đồng dư với 4(mod 7)
=>22224.2222 đồng dư với 4.3(mod 7)
=>22225 đồng dư với 12(mod 7)
=>22225 đồng dư với 5(mod 7)
=>22225.22225550 đồng dư với 5.1(mod 7)
=>22225555 đồng dư với 5(mod 7)
Lại có:
5555 đồng dư với 4(mod 7)
=>55553 đồng dư với 43(mod 7)
=>55553 đồng dư với 64(mod 7)
=>55553 đồng dư với 1(mod 7)
=>(55553)740 đồng dư với 1740(mod 7)
=>55552220 đồng dư với 1(mod 7)
Vì 5555 đồng dư với 4(mod 7)
=>55552 đồng dư với 42(mod 7)
=>55552 đồng dư với 16(mod 7)
=>55552 đồng dư với 3(mod 7)
=>55552.55552220 đồng dư với 3.1(mod 7)
=>55552222 đồng dư với 3(mod 7)
=>22225555+55552222 đồng dư với 4+3(mod 7)
=>22225555+55552222 đồng dư với 7(mod 7)
=>22225555+55552222 đồng dư với 0(mod 7)
=>22225555+55552222 chia hết cho 7
=>ĐPCM