giup minh cau nay voi a. minh cam on. cho a, b la so duong
chung minh bdt \(\left(1+\frac{a}{b}\right)^5+\left(1+\frac{b}{a}\right)^{5^{ }}\ge64\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+\frac{7}{4}\right)\times\frac{3}{2}=6\)
\(\Leftrightarrow\left(x+\frac{7}{4}\right)=6\div\frac{3}{2}\)
\(\Leftrightarrow x+\frac{7}{4}=4\)
\(\Leftrightarrow x=4-\frac{7}{4}\)
\(\Leftrightarrow x=\frac{9}{4}\)
b) \(x\div\frac{3}{5}+\frac{2}{5}=\frac{9}{5}\)
\(\Leftrightarrow x\div\frac{3}{5}=\frac{9}{5}-\frac{2}{5}\)
\(\Leftrightarrow x\div\frac{3}{5}=\frac{7}{5}\)
\(\Leftrightarrow x=\frac{7}{5}\times\frac{3}{5}\)
\(\Leftrightarrow x=\frac{21}{25}\)
c) \(\frac{1}{2}\div3+x=\frac{5}{3}\)
\(\Leftrightarrow\frac{1}{6}+x=\frac{5}{3}\)
\(\Leftrightarrow x=\frac{5}{3}-\frac{1}{6}\)
\(\Leftrightarrow x=\frac{3}{2}\)
\(BĐT\Leftrightarrow\left(\frac{a+1}{a}\right)\left(\frac{b+1}{b}\right)\left(\frac{c+1}{c}\right)\ge64\)(*)
Mà \(\frac{a+1}{a}=\frac{\left(a+a\right)+\left(b+c\right)}{a}\ge\frac{2a+2\sqrt{bc}}{a}\ge\frac{2\sqrt{2a.2\sqrt{bc}}}{a}=\frac{4\sqrt{a\sqrt{bc}}}{a}\) (1)
Tương tự \(\frac{b+1}{b}\ge\frac{4\sqrt{b\sqrt{ac}}}{b}\) (2) ; \(\frac{c+1}{c}\ge\frac{4\sqrt{c\sqrt{ab}}}{c}\) (3)
Từ (1), (2) và (3) nhân vế theo vế ta được (*) \(\ge\frac{4\sqrt{a\sqrt{bc}}.4\sqrt{b\sqrt{ac}}.4\sqrt{c\sqrt{ab}}}{abc}=\frac{64abc}{abc}=64\)
Dấu ''='' xảy ra khi \(\hept{\begin{cases}a+b+c=1\\1+\frac{1}{a}=1+\frac{1}{b}=1+\frac{1}{c}=4\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)
Cách khác: Áp dụng BĐT AM-GM ta có:
\(1+\frac{1}{a}=\frac{1}{a}\left(a+b+c+a\right)\ge\frac{1}{4}4\sqrt[4]{a^2bc}\)
\(\Rightarrow1+\frac{1}{a}\ge\frac{4}{a}\sqrt[4]{\frac{a^4bc}{a^2}}=4\sqrt[4]{\frac{bc}{a^2}}\)
Tương tự cũng có: \(1+\frac{1}{b}\ge4\sqrt[4]{\frac{ca}{b^2}};1+\frac{1}{c}\ge4\sqrt[4]{\frac{ab}{c^2}}\)
\(\Rightarrow VT\ge4\sqrt[4]{\frac{bc}{a^2}}4\sqrt[4]{\frac{ca}{b^2}}4\sqrt[4]{\frac{ab}{c^2}}=64\)
Còn tỷ tỷ cách đây cần thì IB nhé !!
Ta cần chứng minh \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
\(\Leftrightarrow1+abc+ab+bc+ca+a+b+c\ge1+3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}+abc\)
\(\Leftrightarrow ab+bc+ca+a+b+c\ge3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}\)
Đúng theo BĐT AM-GM. Thật vậy ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc}\)
\(\ge\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}\ge64\).Từ \(a+b+c=1\Rightarrow abc\le\frac{1}{27}\)
\(\Rightarrow\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}=\left(\frac{1}{\sqrt[3]{abc}}+1\right)^3\ge64\)
Đẳng thức xảy ra khi a=b=c=1/3
a, \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\) \(\left(a>0;a\ne2\right)\)
\(=\left[\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right]:\frac{a+2}{a-2}\)
\(=\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}.\frac{a-2}{a+2}\)
\(=\frac{2\sqrt{a}}{\sqrt{a}}.\frac{a-2}{a+2}\)
\(=\frac{2\left(a-2\right)}{a+2}\)
b, Để: \(A=1\Leftrightarrow\frac{2\left(a-2\right)}{a+2}=1\)
\(\Rightarrow\frac{2a-4-a-2}{a+2}=0\)
\(\Rightarrow\frac{a-6}{a+2}=0\)
\(\Rightarrow a-6=0\)
\(\Rightarrow a=6\left(tm\right)\)
Vậy...........................
Ta cần chứng minh \((1+a)(1+b)(1+c) \geq (1+\sqrt[3]{abc})^3\)
\(\Leftrightarrow 1+abc+ab+bc+ca+a+b+c \geq 1+3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}+abc\)
\(\Leftrightarrow ab+bc+ca+a+b+c \geq 3\sqrt[3]{(abc)^2}+3\sqrt[3]{abc}\)
Đúng theo BĐT AM-GM. Áp dụng vào ta có:
\(\left(1+\frac{1}{a} \right)\left(1+\frac{1}{b} \right)\left(1+\frac{1}{c} \right)=\dfrac{(1+a)(1+b)(1+c)}{abc} \geq \dfrac{(1+\sqrt[3]{abc})^3}{abc} \geq 64\)
Từ \(a+b+c=1 \Rightarrow abc\le \frac{1}{27}\) \(\Rightarrow \dfrac{(1+\sqrt[3]{abc})^3}{abc}=\bigg(\dfrac{1}{\sqrt[3]{abc}}+1\bigg)^3 \geq 64\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
\(VT\ge4\frac{\sqrt[4]{bc}}{\sqrt{a}}.4\frac{\sqrt[4]{ca}}{\sqrt{b}}.4\frac{\sqrt[4]{ab}}{\sqrt{c}}=64\)
Áp dụng bất đẳng thức AM-GM 3 số không âm :
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{abc}{abc}}=3\sqrt[3]{1}=3\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Leftrightarrow a=b=c\)
Áp dụng BĐT AM - GM ta có :
\(\left(1+\frac{a}{b}\right)^5+\left(1+\frac{b}{a}\right)^5\ge2^5\left(\sqrt{\frac{a}{b}}\right)^5+2^5\left(\sqrt{\frac{b}{a}}\right)^5=32\left[\left(\sqrt{\frac{a}{b}}\right)^5+\left(\sqrt{\frac{b}{a}}\right)^5\right]\)
\(\ge32.2\sqrt{\left(\sqrt{\frac{a}{b}}\right)^5\left(\sqrt{\frac{b}{a}}\right)^5}=32.2=64\)(đpcm)
Dấu "=" xảy ra \(\Leftrightarrow a=b\)