K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

Ta có \(A=\left(x+\frac{2}{y}\right)\left(\frac{y}{x}+2\right)\)

\(=y+\frac{2}{x}+2x+\frac{4}{y}\ge2\sqrt{y.\frac{4}{y}}+2\sqrt{\frac{2}{x}.2x}=8\)

Vậy Cái Đề

28 tháng 10 2016

Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath

2 tháng 8 2018

Tham khảo bài giải nhé !

CHúc bạn học tốt

31 tháng 3 2020

- Áp dụng BĐT cauchuy ta có :

\(\left\{{}\begin{matrix}x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\\y+\frac{1}{z}\ge2\sqrt{\frac{y}{z}}\\z+\frac{1}{x}\ge2\sqrt{\frac{z}{x}}\end{matrix}\right.\)

- Nhân 3 vế trên lại ta được :

\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge2\sqrt{\frac{x}{y}}.2\sqrt{\frac{y}{z}}.2\sqrt{\frac{z}{x}}\)

\(2\sqrt{\frac{x}{y}}.2\sqrt{\frac{y}{z}}.2\sqrt{\frac{z}{x}}=8\sqrt{\frac{x.y.z}{y.z.x}}=8.1=8\)

=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge8\) ( đpcm )

8 tháng 2 2020

Áp dụng bđt AM-GM ta có:

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge4\)

CMTT \(\left(y+\frac{1}{y}\right)^2\ge4\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge4\left(dpcm\right)\)

Dấu"="xảy ra \(\Leftrightarrow x=y=1\)

9 tháng 9 2020

Động não tí đi Quỳnh, a thấy bài này cũng không khó.

9 tháng 9 2020

Bài dễ mừ, có phải Croatia thật ko vậy :))  (viết đề bị nhầm, là x,y,z dương chứ :))

Áp dụng Cauchy-Schwarz dạng cộng mẫu số:

\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)

\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)

Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)

\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)

Dấu bằng xảy ra khi và chỉ khi x=y=z,  Xong! :))

28 tháng 4 2017

y=1

x=2

28 tháng 4 2017

bạn giải thích rõ ra đi

10 tháng 4 2021

HD: áp dụng BĐT Cô-si cho 3 số hạng trên, khi đó trong căn sẽ triệt tiêu các tổng  suy ra đpcm

13 tháng 4 2016

bài này dễ mà

bạn bỏ ngoặc ra nó ntn này 

(x+1/x)^2+(y+1/y)^2=x^2+2+1/x^2+y^2+2+1/y^2=x^2+1/x^2+y^2+1/y^2+4(bạn chứng minh x^2+1/x^2 luôn lớn hơn hoặc bằng 2 như sau x^2+1/x^2-2=x^4+1-2x^2/x^2=(x^2+1)^2/X^2 luôn lớn hơn hoặc bằng 0 vậy x^2+1/x^2 luôn lớn hơn hoặc bằng 2 chứng minh tương tự với y^2+1/y^2 nha bạn) vậy suy ra ĐPCM