Một người đi từ A đến B dài 12km, trên 1/3 quãng đường AB đi với vận tốc 3km/h,1/3 quãng đường tiếp theo đi với vận tốc 4km/h, quãng đường còn lại đi hết 1h30'. Tính vận tốc trung bình trên quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
quãng đường AB dài: \(S=V.t\left(km\right)\)(1)
trong 1/2 thời gian t đi với Vận tốc Trong 1/2 thời gian t đi với vận tốc 5km/h, 1/4 thời gian còn lại đi với vận tốc 4km/h, quãng đường cuối đi với vận tốc 3km/h
\(=>S=V1.\dfrac{t}{2}+V2.\dfrac{t}{4}+V3.\dfrac{t}{4}\)
\(=\dfrac{5t}{2}+t+\dfrac{3t}{4}\left(2\right)\)
(1)(2)\(=>V.t=\dfrac{5t}{2}+t+\dfrac{3t}{4}< =>V.t=\dfrac{10t+4t+3t}{4}\)
\(< =>V.t=\dfrac{17t}{4}=>4.V.t=17t=>V=\dfrac{17t}{4t}=4,25km/h\)
Vậy vận tốc trung bình =4,25km/h
Quãng đường người đó đi được trong nửa thời gian đầu là:
\(s_1=v_1.t_1=5.\dfrac{1}{2}t=\dfrac{5}{2}t\left(km\right)\)
Trong nửa thời gian còn lại, gọi s là quãng đường đi trong nửa thời gian còn lại.
Thời gian người đó đi 1/3 quãng đường đầu là:
\(t_2=\dfrac{s_2}{v_2}=\dfrac{\dfrac{1}{3}s}{v_2}\left(h\right)\)
Thời gian đi trong quãng đường còn lại:
\(t_3=\dfrac{s_3}{v_3}=\dfrac{\dfrac{2}{3}s}{v_3}\left(h\right)\)
Ta có: \(t_2+t_3=\dfrac{\dfrac{1}{3}s}{v_2}+\dfrac{\dfrac{2}{3}s}{v_3}=s\left(\dfrac{1}{3v_2}+\dfrac{2}{3v_3}\right)=\dfrac{t}{2}\)
\(\Rightarrow v_{tb}=\dfrac{S}{t}=\dfrac{s_1+s}{t_1+t_2+t_3}=\dfrac{\dfrac{5}{2}t+\dfrac{t}{2\left(\dfrac{1}{3v_2}+\dfrac{2}{3v_3}\right)}}{t}=\dfrac{71}{14}\left(km/h\right)\)
Bạn kiểm tra lại phần tính toán
Mình sẽ nêu cách làm chung của những dạng như này.
Nếu cho biết vận tốc trên từng phần quãng đường:
B1: Tính từng khoảng thời gian t1,t2,...theo tổng quãng đường S
B2: Tính tổng thời gian t=t1+t2+...theo tổng quãng đường S
B3: Áp dụng công thức tính vận tốc trung bình.
Nếu cho biết vận tốc trong từng khoảng thời gian thì làm ngược lại là được.
Giờ ta sẽ áp dụng vô bài.
Đề bài cho ban đầu 1/3 quãng đường đi với vận tốc 20km/h, nghĩa là vận tốc trên từng phần quãng đường trước.
Gọi tổng quãng đường là S
Thời gian đi trên 1/3 quãng đường đầu là:
\(t_1=\dfrac{\dfrac{1}{3}S}{v_1}\left(h\right)\)
Gọi thời gian đi trên 2/3 quãng đường sau là t2
Lúc này bài toán lại đổi về vận tốc trong từng khoảng thời gian
Quãng đường đi được trong 2/3 thời gian còn lại là:
\(s_2=v_2.\dfrac{2}{3}t_2\left(km\right)\)
Quãng đường đi được trong thời gian cuối là:
\(s_3=v_3.\dfrac{1}{3}t_2\left(km\right)\)
Có \(s_2+s_3=\dfrac{2}{3}v_2t_2+\dfrac{1}{3}v_3t_2=t_2\left(\dfrac{2}{3}v_2+\dfrac{1}{3}v_3\right)=\dfrac{2}{3}S\Rightarrow t_2=\dfrac{\dfrac{2}{3}S}{\dfrac{2}{3}v_2+\dfrac{1}{3}v_3}\left(h\right)\)
\(\Rightarrow v_{tb}=\dfrac{S}{t}=\dfrac{S}{t_1+t_2}=\dfrac{S}{\dfrac{1}{3v_1}S+\dfrac{\dfrac{2}{3}S}{\dfrac{2}{3}v_2+\dfrac{1}{3}v_3}}=\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{\dfrac{2}{3}}{\dfrac{2}{3}v_2+\dfrac{1}{3}v_3}}=...\left(km/h\right)\)
Quãng đường bằng dài:
90 : (5 + 4 + 3) = 7,5 (km)
Đáp số: 7,5 km
Ủng hộ nha
ta có:
thới gian ô tô đó đi 1/5 quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{5v_1}=\frac{S}{225}\)
thời gian ô tô đi 2/5 quãng đường tiếp theo là:
\(t_2=\frac{S_2}{v_2}=\frac{2S}{5v_2}=\frac{2S}{75}\)
thời gian ô tô đi hết quãng đường còn lại là:
\(t_3=\frac{S_3}{v_3}=\frac{2S}{5v_3}=\frac{2S}{150}=\frac{S}{75}\)
vận tốc trung bình của ô tô là:
\(v_{tb}=\frac{S}{t_1+t_2+t_3}=\frac{S}{\frac{S}{225}+\frac{2S}{75}+\frac{S}{75}}\)
\(\Leftrightarrow v_{tb}=\frac{S}{S\left(\frac{1}{225}+\frac{2}{75}+\frac{1}{75}\right)}\)
\(\Leftrightarrow v_{tb}=\frac{1}{\frac{1}{225}+\frac{2}{75}+\frac{1}{75}}=22,5\) km/h
vậy vận tốc trung bình của ô tô là 22,5km/h
Đổi 24 phút = 0,4 giờ Thời gian đi 1/2 quãng đường với 3km là t1(giờ) Thời gian đi 1/2 quãng đường với 9km là t2(giờ) Vì vận tốc đi nửa quãng đường sau gấp 3 lần vận tốc đi nửa quãng đường trước 3 lần nên thời gian đi nửa quãng đường trước = 3 lần thời gian đi nửa quãng đường sau ( vận tốc tỉ lệ nghịch với thời gian ) => 3x t2 + t2 = 0,4 => t2 = 0,1(giờ) => t1 = 0.3(giờ) => quãng đường là : 0.3 x 3 + 0,1 x 9 = 1.8 (km )
Đổi 24 phút = 0,4 giờ
Thời gian đi 1/2 quãng đường với 3km là t1(giờ)
Thời gian đi 1/2 quãng đường với 9km là t2(giờ)
Vì vận tốc đi nửa quãng đường sau gấp 3 lần vận tốc đi nửa quãng đường trước 3 lần nên thời gian đi nửa quãng đường trước = 3 lần thời gian đi nửa quãng đường sau ( vận tốc tỉ lệ nghịch với thời gian )
=> 3x t2 + t2 = 0,4 => t2 = 0,1(giờ) => t1 = 0.3(giờ)
=> quãng đường là : 0.3 x 3 + 0,1 x 9 = 1.8 (km )
Thời gian đi 1/3 quãng đường đầu tiên là :
\(\dfrac{12}{3}:3=\dfrac{4}{3}\left(giờ\right)\)
Thời gian đi 1/4 quãng đương tiếp theo là:
\(\dfrac{12}{3}:4=1\left(giờ\right)\)
Vận tốc trong bình khi đi trên quãng đường AB là:
\(\dfrac{12}{\dfrac{4}{3}+1+\dfrac{3}{2}}\approx3,13\left(\dfrac{km}{h}\right)\)
quãng đường AB=12km nên 1/3 quãng đường bằng 4km
quãng thứ 1 ta có thời gian đi \(t_1=\dfrac{4}{3}\left(h\right)\)
quãng thứ 2 \(t_2=\dfrac{4}{4}=1\left(h\right)\)
quãng thứ 3 \(t_3=1,5\left(h\right)\)
vận tốc trung bình \(v_{tb}=\dfrac{12}{\dfrac{4}{3}+1+1,5}=...\)