Tính P\(=\left(x^3+12x-9\right)^{2021}\) khi \(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)
\(\Leftrightarrow x^3=4\left(\sqrt{5}+1\right)-4\left(\sqrt{5}-1\right)-3.\sqrt[3]{4\left(\sqrt{5}+1\right).4\left(\sqrt{5}-1\right)}x\)
\(\Leftrightarrow x^3=8-3.\sqrt[3]{4^2.\left(5-1\right)}x\)
\(\Leftrightarrow x^3=8-3.4x=8-12x\)
\(\Rightarrow M=\left(x^3+12x-9\right)^{2014}=\left(8-12x+12x-9\right)^{2014}=\left(-1\right)^{2014}=1\)
Đề có sai không vậy bạn?
Phải là \(4\left(\sqrt{5}+1\right)\) chứ
\(x^3=4\left(\sqrt{5}+1\right)-4\left(\sqrt{5}-1\right)-3\sqrt[3]{4\left(\sqrt{5}+1\right).4\left(\sqrt{5}-1\right)}.\left(\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\right)\)\(\Rightarrow x^3=8-12x\)
\(\Rightarrow x^3+12x-9=-1\)
\(\Rightarrow P=\left(-1\right)^{2015}=-1\)
`Ta có : \(x=\sqrt[3]{4\sqrt{5}+4}-\sqrt[3]{4\sqrt{5}-4}\)
\(\Rightarrow x^3=8-3\sqrt[3]{\left(4\sqrt{5}\right)^2-4^2}.x\Leftrightarrow x^3+12x-8=0\Rightarrow x^3-12x-9=-1\)
Từ đó tính được P = (-1)2016 = 1
`x=\root{3}{4(\sqrt5+1)}-\root{3}{4(\sqrt5-1)}`
`<=>x^3=4(sqrt5+1)-4(\sqrt5-1)-3\root{3}{16(5-1)}(\root{3}{4(\sqrt5+1)}-\root{3}{4(\sqrt5-1)})`
`<=>x^3=4\sqrt5+4-4sqrt5+4-3\root{3}{64}x`
`<=>x^3=8-12x`
`<=>x^3+12x-8=0`
`=>P=(x^3+12-8-1)^2021=(-1)^2021=-1`
*Có gì khum hiểu comment bên dưới.