Một mảnh đất hình chữ nhật có diện tích là 360 mét vuông Nếu tăng chiều rộng lên 2m và giảm chiều dài 6m diện tích mảnh đấtkhông thay đổi. Tính chiều dài, chiều rộng của mảnh đất HCN đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng ban đầu là x
Chiều dài ban đầu là: x+17
Theo đề, ta có: \(x\left(x+17\right)=\left(x+12\right)\left(x+2\right)\)
\(\Leftrightarrow x^2+14x+24-x^2-17x=0\)
\(\Leftrightarrow-3x=-24\)
hay x=8
Vậy: Diện tích ban đầu là \(200m^2\)
Gọi chiều rộng mảnh đất ban đầu là x (m) với x>0
Gọi chiều dài mảnh đất ban đầu là y (m) với y>8
Do diện tích mảnh đất là 192 \(m^2\) nên: \(xy=192\)
Chiều dài mảnh đất sau khi giảm 8m: \(y-8\left(m\right)\)
Chiều rộng mảnh đất sau khi tăng 4m: \(x+4\left(m\right)\)
Diện tích mảnh đất lúc sau: \(\left(x+4\right)\left(y-8\right)\)
Do diện tích mảnh đất ko đổi nên: \(\left(x+4\right)\left(y-8\right)=192\)
Ta có hệ: \(\left\{{}\begin{matrix}xy=192\\\left(x+4\right)\left(y-8\right)=192\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=192\\xy-8x+4y-32=192\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=192\\2x-y+8=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+8\right)=192\\y=2x+8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+8x-192=0\\y=2x+8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=24\end{matrix}\right.\)
Gọi chiều rộng, chiều dài lần lượt là a,b
Theo đề, ta có: ab=360 và (a+2)(b-6)=ab
=>-6a+2b-12=0 và ab=360
=>-6a+2b=12
=>3a-b=6 và ab=360
=>b=3a-6 và a(3a-6)=360
=>a=12; b=3*12-6=30
=>C=(12+30)*2=84m
Gọi chiều rộng của mảnh đất ban đầu là x (m) với x>1
Chiều dài ban đầu của mảnh đất: \(x+3\) (m)
Diện tích ban đầu của mảnh đất: \(x\left(x+3\right)\)
Chiều dài lúc sau: \(x+3+2=x+5\left(m\right)\)
Chiều rộng lúc sau: \(x-1\) (m)
Diện tích lúc sau: \(\left(x-1\right)\left(x+5\right)\)
Do diện tích mảnh đất ko đổi nên ta có pt:
\(x\left(x+3\right)=\left(x-1\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+3x=x^2+4x-5\)
\(\Leftrightarrow x=5\left(m\right)\)
Vậy mảnh đất ban đầu rộng 5m, dài 8m
Gọi chiều dài ban đầu là : x ( x > 0 )
Chiều rộng ban đầu là : x - 9 ( m )
Chiều dài sau khi tăng là : x + 3 ( m )
Chiều rộng sau khi giảm là : x - 10 ( m )
Vì diện tích hình chữ nhật không đổi nên ta có phương trình:
\(x\left(x-9\right)=\left(x+3\right)\left(x-10\right)\)
\(\Leftrightarrow x^2-9x=x^2-7x-30\)
\(\Leftrightarrow9x-7x=30\)
\(\Leftrightarrow x=15\) ( nhận )
Diện tích hình chữ nhật ban đầu là:
\(15\left(15-9\right)=90\left(m^2\right)\)
Vậy diện tích hình chữ nhật ban đầu là: 90 m2
Lời giải:
Gọi chiều dài và chiều rộng ban đầu của mảnh đất lần lượt là $a$ và $b$ (m)
Theo bài ra ta có:
\(\left\{\begin{matrix} ab=630\\ a-5=b+4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} ab=630\\ a=b+9\end{matrix}\right.\)
$\Rightarrow b(b+9)=630$
$\Leftrightarrow b^2+9b-630=0$
$(b-21)(b+30)=0$
Vì $b>0$ nên $b=21$ (m)
$a=b+9=30$ (m)
Dễ ợt
Diện tích mảnh đất là :
240 x 48 = 11520 ( m2 )
Nếu tăng chiều rộng lên 24 m thì chiều rộng là :
48 + 24 = 72 ( m )
Nếu tăng chiều rộng lên 24 m mà diện tích không thay đổi nên diện tích mảnh đất vẫn là 11520 m2 .
Lúc đó chiều rộng là :
11520 : 72 = 160 ( m )
Đáp số ; 160m
GOI : x la chieu dai manh vuon
: y la chieu rong manh vuon
_chu vi manh vuon la 66m
=>(x + y ) . 2 = 66
<=> x + y = 33 (1)
_tang chieu dai len 3 lan va giam chieu rong xuong 1 nua thi chu vi la 128m
=> (3x + \(\frac{y}{2}\)) . 2 = 128
<=> 3x + \(\frac{y}{2}\)=\(\frac{128}{2}\)
<=> \(\frac{2.\left(3x\right)}{2}+\frac{y}{2}=\frac{128}{2}\)
<=>\(6x+y=128\) (2)
Tu (1) va (2) ta co he phuong trinh
\(\hept{\begin{cases}x+y=33\\6x+y=128\end{cases}}\)
\(< =>\hept{\begin{cases}-5x=-95\\x+y=33\end{cases}}\)
\(< =>\hept{\begin{cases}x=19\\19+y=33\end{cases}}\)
\(< =>\hept{\begin{cases}x=19\\y=14\end{cases}}\)
Vay : chieu dai la 19
: chieu rong la 14 OK NHA
Ko phải toán lớp 9 .