Cho hàm số f: R\(\rightarrow\)R , \(n\ge2\) là số nguyên . CMR: nếu
\(\dfrac{f\left(x\right)+f\left(y\right)}{2}\ge f\left(\dfrac{x+y}{2}\right)\forall x,y\ge0\) (1) thì ta có :
\(\dfrac{f\left(x_1\right)+f\left(x_2\right)+....+f\left(x_n\right)}{n}\ge f\left(\dfrac{x_1+x_2+...+x_n}{n}\right)\) \(\forall x\ge0,i=\overline{l,n}\)