K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Theo đề: x+y+z=0

=> (x+y+z)2=0

<=> x2+y2+z2 +2xy+2xz+2yz=0

<=> x2 + y2 + z2 + 2.(xy+xz+yz)=0

mà xy+xz+yz=0

=> x2 + y2 +z2 =0

<=> x=y=z=0 (đpcm)

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z(x+y+z)}}=\sqrt{\frac{xy}{(z+x)(z+y)}}\leq \frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{z+y}\right)\)

Hoàn toàn tương tự với các phân thức còn lại suy ra:

\(\sum \sqrt{\frac{xy}{xy+z}}\leq \frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{3}$

NV
17 tháng 7 2021

Nếu biểu thức là: \(P=\dfrac{x^5}{y^3}+\dfrac{y^5}{z^3}+\dfrac{z^5}{x^3}\) thì đề bài sai

Biểu thức này chỉ có min, không có max 

17 tháng 7 2021

Thầy ơi làm sao để xác định đề bài tìm Max hay Min ạ?