K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEDH và ΔEFH có

ED=EF

EH chung

HD=HF

Do đó: ΔEDH=ΔEFH

Ta có ΔEDF cân tại E

mà EH là đường trung tuyến

nên EH là đường cao

b: DH=HF=DF/2=8cm

=>EH=15cm

c: Xét ΔEHF có EF>EH>HF

nên góc EHF>góc EFH>góc HEF

a: ED<EF

=>HD<HF

b: Xét ΔDEI có DE=DI và góc D=60 độ

nên ΔDEI đều

c: Xét tứ giác FEBD có

A là trung điểm chung của FB và ED

=>FEBD là hbh

=>FE//BD

=>BD vuông góc DE

a: \(\widehat{E}=35^0\)

Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)

nên FD<DE<EF

b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có

EH chung

\(\widehat{DEH}=\widehat{KEH}\)

Do đó: ΔEDH=ΔEKH

Suy ra: HD=HK

hay ΔHDK cân tại H

25 tháng 2 2022

a: ˆE=350E^=350

Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^

nên FD<DE<EF

b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có

EH chung

ˆDEH=ˆKEHDEH^=KEH^

Do đó: ΔEDH=ΔEKH

Suy ra: HD=HK

a: ED<EF

=>góc EFD<góc EDF

b: FD=căn 9^2+12^2=15cm

=>EM=FD/2=7,5cm

10 tháng 5 2022

Theo định lí Pytago tam giác DEF vuông tại D

\(DF=\sqrt{EF^2-DE^2}=16cm\)

b, Xét tam giác EDF và tam giác DHF 

^DFE _ chung 

^EDF = ^DHF = 900

Vậy tam giác EDF ~ tam giác DHF (g.g) 

\(\dfrac{EF}{DF}=\dfrac{DF}{HF}\Rightarrow DF^2=EF.HF\)

a: \(DF=\sqrt{20^2-12^2}=16\left(cm\right)\)

b: Xét ΔEDF vuông tại D và ΔDHF vuông tại H có 

góc F chung

Do đó: ΔEDF\(\sim\)ΔDHF