K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

c/ Ta có tính chất: Trong 1 tam giác vuông, trung tuyến của góc vuông đến cạnh đối diện (cạnh huyền) sẽ bằng 1/2 cạnh huyền.

Xét tam giác vuông ABC, có trung tuyến AM, vậy AM=CM (=1/2 BC) => Tam giác ACM cân ( 2 cạnh bên bằng nhau) => ^ MCA=^MAC

Xét tam giác DMB và tam giác CMA

Có: CM=MB ( M trugn điểm)

      DM=AM ( gt)

      ^DMB=^CMA (đđ)

Vậy hai tam giác =nhau =>^BDM=^MAC và ^DBM=^

B suy tiếp nhé!

22 tháng 4 2017

Bạn tự vẽ hình nha!

Xét tam giác ABC vuông tại A, có: \(BC^2=AB^2+AC^2\)

                                                \(225=81+AC^2\)

                                                 \(\Rightarrow AC^2=144\)

                                                \(\Rightarrow AC=12\left(cm\right)\)

Xét tam giác MAB và tam giác MDC:

Có: DM=AM (gt)

      CM=MB (AM trung tuyến)

      Góc DMC=Góc AMB (đđ)

Vậy tam giác MAB= tam giác MDC (C.G.C)

a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

b: XétΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

a: Xét ΔMAC và ΔMDB có

MA=MD

góc AMC=góc DMB

MC=MB

=>ΔMAC=ΔMDB

b: ΔMAC=ΔMDB

=>góc MAC=góc MDB

=>AC//DB

=>DB vuông góc AB

ΔABC vuông tại A

mà AM là trung tuyến

nên AM=1/2BC

17 tháng 4 2019

đề bài sai nhé, bn xem lại câu a

17 tháng 4 2019

Mình ghi nhầm: 

a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông

b) Gọi K là trung điểm của AC. Chứng minh: KB=KD

c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân

a) Xét ΔMAB và ΔMKC có 

MA=MK(gt)

\(\widehat{AMB}=\widehat{KMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔMAB=ΔMKC(c-g-c)

a: Xét ΔMAB và ΔMKC có

MA=MK

góc AMB=góc KMC

MB=MC

=>ΔMAB=ΔMKC

b: ΔMAB=ΔMKC

=>góc MAB=góc MKC

=>AB//KC

=>KC vuông góc AC

=>góc ACK=90 độ

c: Xét ΔIAB vuông tại A và ΔICK vuông tại C có

IA=IC

AB=CK

=>ΔIAB=ΔICK

=>IB=IK

d: Xét ΔABC có CI/CA=CM/CB

nên IM//AB

=>IM vuông góc KB