cho A =\(\frac{n+2}{n-5}\)(N thuộc z , n khác 5)
tìm n để A thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài có chút sai xót nha bn, phải là tìm n để A thuộc Z
Để A nguyên thì n + 2 chia hết cho n - 5
=> n - 5 + 7 chia hết cho n - 5
Do n - 5 chia hết cho n - 5 => 7 chia hết cho n - 5
=> \(n-5\in\left\{1;-1;7;-7\right\}\)
=> \(n\in\left\{6;4;12;-2\right\}\)
Ta có : \(\dfrac{n+2}{n-5}=\dfrac{n-5+7}{n-5}=\dfrac{n-5}{n-5}+\dfrac{7}{n-5}=1+\dfrac{7}{n-5}\)
Mà A thuộc Z =>\(1+\dfrac{7}{n-5}\in Z=>\dfrac{7}{n-5}\in Z\)
=>\(7⋮\left(n-5\right)=>\left(n-5\right)\inƯ\left(7\right)=\left(1;-1;7;-7\right)\)
=>\(\left\{{}\begin{matrix}n-5=1=>n=6\\n-5=-1=>n=-4\\n-5=7=>n=12\\n-5=-7=>n=-2\end{matrix}\right.\)
Vậy n=-4;-2;6;12 là nghiệm của phương trình trên
n - 5 = -1 \(\Rightarrow\) n = 4 chứ o phải là - 4
vậy : n = 6 ; n = 4 ; n = 12 ; n = -2 mới đúng
để A thuộc Z
=>n+2 chia hết n-5
=>n-5+7 chia hết n-5
=>7 chia hết n-5
=>n-5 thuộc {1,-1,7,-7}
=>n thuộc {6,4,12,-2}
mk nhanh nhất nhé
Ta có \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n\cdot5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để \(A\in Z\Rightarrow\frac{7}{n-5}\in Z\) \(\Rightarrow\) 7 chia hết cho n-5
\(\Rightarrow\left(n-5\right)\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)
n-5 | -7 | -1 | 1 | 7 |
n | -2 | 4 | 6 | 12 |
TM | TM | TM | TM |
Vậy để A thuộc Z thì \(x\in\left\{-2;4;6;12\right\}\)
để A thuộc Z =>n+2 chia hết cho n-5
=>n-5+7 chia hết cho n-5
=>7 chia hết cho n-5
=>n-5 thuộc Ư (7)={1,7,-1,-7}
*)n-5=1=>n=6
n-5=-1=>n=-4
n-5=7=>n=12
n-5=-7=>n=-2
vậy n=-2,-4,6,12
Để A thuộc Z suy ra n+2 chia hết cho 2
suy ra n-5+7 chia hết cho n-5
n-5 thuộc U(7)={1;7;-1;-7}
TH1:n-5=1 suy ra n=6
TH2:n-5=-1 suy ra n=-4
TH3:n-5=7 suy ra n=12
TH4:n-5=-7 suy ra n=-2
Vậy n thuộc {6;-4;12;-2} thì n thuộc Z
Để A \(\in\) Z thì n+2 \(⋮\) n-5
=>(n-5)+7 \(⋮\) n-5
=>n-5 \(⋮\) n-5 => 7 \(⋮\) n-5
=>n-5 \(\in\) Ư(7)
hay n-5 \(\in\){1;-1;7;-7}
=>n\(\in\){6;4;12;-2}
Gọi ƯCLN(2n + 1 ; 3n + 2)=d
Nếu ta c/m d = 1 thì \(\frac{2n+1}{3n+2}\) là p/s tối giản
ta có 2n + 1 chia hết cho d => 3(2n + 1) chia hết cho d <=> 6n + 3 chia hết cho d
3n + 2 chia hết cho d => 2(3n + 2) chia hết cho d <=> 6n + 4 chia hết cho d
Vậy (6n + 4) - (6n + 3) chia hết cho d => 1 chia hết cho d (dpcm)
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để \(1+\frac{7}{n-5}\) là số nguyên <=> \(\frac{7}{n-5}\) là số nguyên
=> n - 5 \(\in\) Ư(7) = { - 7; - 1 ; 1 ; 7 }
=> n - 5 = { - 7; - 1 ; 1 ; 7 }
=> n = { - 2; 4; 6; 12 }
A=n+2/n-5=n-5+7/n-5=n-5/n-5+7/n-5=1+7/n-5
do7chia hết cho n-5=>n-5 thuộc Ư(7)
=>n-5={-7;-1;1;7}=>n={-2;4;6;12}
n+2/n-5=n-5+8/n-5=1+8/n-5
de a thuoc Z thi n-5 thuoc U(8)={+-1;+-2;+-4;+-8}
tu do tim n-5 la cac gia tri tren
roi tu tim n nhe
Để \(A\in Z\)thì \(n+2⋮n-5\)
=> \(\left(n-5\right)+7⋮n-5\)
Mà \(n-5⋮n-5\)
=> \(7⋮n-5\)
=> \(n-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
lập bảng:
Vậy \(n\in\left\{-2;4;6;12\right\}\)
Để \(A\in Z\)
\(\Rightarrow n+2⋮n-5\Leftrightarrow n-5+7⋮n-5\)
Mà \(n-5⋮n-5\Rightarrow7⋮n-5\)
\(\Rightarrow n-5\inƯ\left(7\right)=\left(\pm1;\pm7\right)\)
\(\Rightarrow n\in\left(6;4;12;-2\right)\)
Vậy .................................... thì A thuộc Z