Tìm số tự nhiên có 4 chữ số mà chữ số tận cùng của số đó bằng 7.Biết rằng nếu chuyển số 7 này lên đầu thì mới là 2277 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi số cần tìm là \(\overline{ab}5\), số sau khi chuyển là \(5\overline{ab}\), ta có :
5ab
- ab5
288
*b - 5 = 8 => b = 13 (viết 3 nhớ 1)
*a - b = a - 3 = 8 => a = 12 (viết 2 nhớ 1)
Vậy số cần tìm là 235.
bạn lên [onlinemath] đi sẽ có nhiều người giỏi giải giúp bạn nhé
Vì số cần tìm là số có 3 chữ số mà chữ số tận cùng là 7 nên số cần tìm có dạng: \(\overline{ab7}\)
Khi chuyển chữ số 7 hàng đơn vị lên đầu ta được số mới là: \(\overline{7ab}\)
Theo bài ra ta có: \(\overline{7ab}\) - \(\overline{ab7}\) \(\times\) 3 = 12
700 + \(\overline{ab}\) - \(\overline{ab}\) \(\times\) 10 \(\times\) 3 - 21 = 12
679 - \(\overline{ab}\) \(\times\) ( 30 - 1) = 12
\(\overline{ab}\) \(\times\) 29 = 679 - 12
\(\overline{ab}\) \(\times\) 29 = 667
\(\overline{ab}\) = 667 : 29
\(\overline{ab}\) = 23
Số tự nhiên 237
Bài 1: Gọi số đó là: \(\overline{ab5}\)
Ta có: \(\overline{5ab}-\overline{ab5}=288\)
\(\Leftrightarrow500+\overline{ab}-\left(10.\overline{ab}+5\right)=288\)
\(\Leftrightarrow500+\overline{ab}-10.\overline{ab}-5=288\)
\(\Leftrightarrow\left(500-5\right)-\left(10.ab-\overline{ab}\right)\)=288
\(\Leftrightarrow495-9.\overline{ab}=288\)
\(\Leftrightarrow9.\overline{ab}=495-288=207\)
\(\Leftrightarrow\overline{ab}=207:9=23\)
\(\Rightarrow\) số cần tìm là 23.
Bài 3: Gọi số cần tìm là \(\overline{ab}\)
Ta có: \(\overline{ab}+18=\overline{ba}\)
\(\Leftrightarrow10a+b+18=10b+a\)
\(\Leftrightarrow\left(10a-a\right)+18=10b-b\)
\(\Leftrightarrow9a+18=9b\)
\(\Leftrightarrow9\left(a+2\right)=9b\)
\(\Rightarrow a+2=b\)
\(\Rightarrow b=\left(8+2\right):2=5\)
\(\Rightarrow a=8-5=3\)
Vậy: số cần tìm là: \(35\)