gpt: x2+2xy+y2-x-y-12 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
a: \(\dfrac{x^2+2xy+y^2}{x+y}=x+y\)
b: \(\dfrac{64x^3+1}{4x+1}=16x^2-4x+1\)
a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)=\left(x+y\right)^2:\left(x+y\right)=x+y\)
b) \(=\left[\left(5x+1\right)\left(25x^2-5x+1\right)\right]:\left(5x+1\right)=25x^2-5x+1\)
c) \(=\left(y-x\right)^2:\left(y-x\right)=y-x\)
\(a,=\left(x+y\right)^2:\left(x+y\right)=x+y\\ b,=\left(5x+1\right)\left(25x^2-5x+1\right):\left(5x+1\right)=25x^2-5x+1\\ c,=\left(y-x\right)^2:\left(y-x\right)=y-x\)
Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
\(\dfrac{-x^2+2xy-y^2}{x+y}=\dfrac{-\left(x^2-2xy+y^2\right)}{x+y}=\dfrac{-\left(x-y\right)^2}{\left(x+y\right)}=\dfrac{-\left(x-y\right)^3}{\left(x+y\right)\left(x-y\right)}=\dfrac{-\left(x-y\right)^3}{x^2-y^2}=\dfrac{\left(x-y\right)^3}{y^2-x^2}\Rightarrow?=\left(x-y\right)^3\)
\(\dfrac{-x^2+2xy-y^2}{x+y}=\dfrac{?}{y^2-x^2}\)
\(\dfrac{-\left(x-y\right)^2}{x+y}=\dfrac{-?}{x^2-y^2}\)
\(\dfrac{-\left(x-y\right)^2}{x+y}=\dfrac{-?}{\left(x-y\right)\left(x+y\right)}\)
\(-?\left(x+y\right)=-\left(x-y\right)^3\left(x+y\right)\)
\(?=\left(x-y\right)^3\)
\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Câu 1
a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)
b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2