Tìm x biết : \(\frac{2}{5}x\)+\(\frac{3}{10}=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +1/5.6 ) x 10 - x = 0
= ( 1- 1/2 +1/2 -1/3 +1/3 - 1/4 + 1/4 - 1/5 +1/5 -1/6 ) x 10 - x = 0
= ( 1 - 1/6 ) x 10 - x = 0
= 5/6 x 10 - x =0
= 25/3 - x =0
x = 25/3 - 0
x = 25/3
\(\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\right)\times10-x=0\)
\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\times10-x=0\)
\(\left(\frac{1}{1}-\frac{1}{6}\right)\times10-x=0\)
\(\frac{5}{6}\times10-x=0\)
\(\frac{25}{3}-x=0\)
x =\(\frac{25}{3}-0=\frac{25}{3}\)
Ta thấy :
1/1x2 = 1/1 - 1/2
1/2x3 = 1/2 - 1/3
....
=>( 1/1x2 + 1/2x3 + 1/3x4 + 1/5x6 ) x 10 - x = ( 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 ) x 10 - x
= ( 1/1 - 1/6 ) x 10 - x =0
5/6 x 10 - x = 0
25/3 - x = 0
=> x = 25/3
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
B=2+1/1.2+2+1/2.3+........+2+1/9.10
B=2.9+1/1.2+1/2.3+........+1/9.10
B=18+9/10
<=> (1-1/10)(x-1)+x/10=x-9/10
<=> 9x/10-9/10+x/10=x-9/10
<=> x=x
Như vậy, phương trình thỏa mãn với mọi x
\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{9\times10}\)
=\(2\times\frac{1}{1\times2}+2\times\frac{1}{2\times3}+2\times\frac{1}{3\times4}+...+2\times\frac{1}{9\times10}\)
=\(2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\right)\)
=\(2\times\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
=\(2\times\left(\frac{1}{1}-\frac{1}{10}\right)=2\times\left(\frac{10}{10}-\frac{1}{10}\right)=2\times\frac{9}{10}\)
=\(\frac{9}{5}\)
=2-1+1-\(\frac{2}{3}\)+\(\frac{2}{3}\)-\(\frac{1}{2}\)+...+\(\frac{2}{9}\)-\(\frac{1}{5}\)
=2-\(\frac{1}{5}\)
=\(\frac{10}{5}\)-\(\frac{1}{5}\)
=\(\frac{9}{5}\).
**** mình nha mấy bạn.
=> \(C=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
C = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
C = \(1-\frac{1}{100}
\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{9}-\frac{1}{10}\)
\(\frac{2}{5}x+\frac{3}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(\frac{2}{5}x=\frac{9}{10}-\frac{3}{10}=\frac{3}{5}\)
\(x=\frac{\frac{3}{5}}{\frac{2}{5}}=\frac{3}{2}\)
Ta có: \(\frac{1}{1x2}\)+ \(\frac{1}{2x3}\)+ \(\frac{1}{3x4}\)+ \(\frac{1}{4x5}\)+ .....+ \(\frac{1}{9x10}\)
= \(1-\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
= 1 - \(\frac{1}{10}\)
= \(\frac{9}{10}\)