K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Giúp với

23 tháng 4 2018

hình bn tự vẽ nha

a)Xét    Tam giác ABE và  tam giác HBEcó

góc BAE= góc BHE(= 90 độ)

cạnh BE chung

góc ABE=góc HBE(giả thiết)

=>   Tam giác ABE = tam giác HBE(c/h-g/n)

b)  VÌ  Tam giác ABE = tam giác HBE(cmt)

=>BA=BH(2 cạnh tương ứng)

=>B thuộc đường trung trực của AH

=>BE là đường trung trực của đoạn thẳng AH

c) VÌ  Tam giác ABE = tam giác HBE(cmt)

=>AE=HE(2 cạnh tương ứng)

Xét tam giác AEK và tam giác HEC có

góc KAE=CHE(= 90 độ)

AE=HE

góc AEK=góc HEC(= 90 độ)

=>tam giác AEK = tam giác HEC(g.c.g)

=>Ek=EC(2 cạnh tương ứng)

12 tháng 4 2018

Xét tam giác ABE và tam giác HBE có:

BAE=BHE=900

BE là cạnh chung 

góc ABE=gócHBE

=>tam giác ABE=tam giác HBE(cạnh huyền góc nhọn)

b)Ta có :BA=BH(Vi tam giác ABE=tam giác HBE)

              EA=EH(Vi tam giác ABE=tam giác HBE)

=>BE là đường trung trực của AH 

c)Xét tam giác EKA va tam giác ECH,có

AE=EH(Vi tam giác ABE=tam giác HBE)

góc EAK=góc EHC=900 

góc AEK=góc HEC(2 góc đối đỉnh)

=>tam EAK=tam giác HEC(g.c.g)

=>EK=EC(2 cạnh tương ứng)

30 tháng 8 2021

a) Vì EH ⊥ BC ( gt )

⇒ △ BHE vuông tại H

Xét tam giác vuông BAE và tam giác vuông BHE có :

                   BE chung

\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\))

⇒ △ BAE =  △ BHE ( cạnh huyền - góc nhọn )

b) Gọi I là giao điểm của AH và BE

Xét △ ABI và △ HBI có :

BA = BH [ △ BAE = △ BHE (cmt) ]

\(\widehat{B_1}=\widehat{B_2}\) ( BE là tia phân giác của \(\widehat{BAC}\) )

BI chung

⇒ Δ ABI = Δ HBI ( c.g.c )

\(\widehat{AIB}=\widehat{AIH}\) ( 2 góc tương ứng )

\(\widehat{AIB}+\widehat{AIH}\) = 1800 ( 2 góc kề bù )

\(\widehat{AIB}=\widehat{AIH}\) = 900

⇒ BI ⊥ AH (1)

Ta có: IA = IH ( Δ ABI = Δ HBI ( cmt )

Mà I nằm giữa hai điểm A và H (2)

⇒ I là trung điểm của AH ( 3)

Từ (1) (2) (3) ⇒ BI là trung trực của AH

Hay BE là trung trực của AH

c) Xét Δ KAE và Δ CHE có:

\(\widehat{KAE}=\widehat{CHE}\) ( = 900 )

AE = HE ( Δ BAE = Δ BHE (cmt)

\(\widehat{AEK}=\widehat{HEC}\) ( 2 góc đối đỉnh )

⇒ Δ KAE = Δ CHE ( g.c.g )

⇒ EK = EC ( 2 cạnh tương ứng )

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có 

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: Ta có: ΔBAE=ΔBHE

nên BA=BH và EA=EH

hay BE là đường trung trực của AH

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: ta có: ΔABE=ΔHBE

nên AE=HE; BA=BH

Suy ra: BE là đường trung trực của AH