K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Gọi nghiệm nguyên của P(x) là: k

ta có: \(ak^3+bk^2+ck+d=0\)

\(k.\left(ak^2+bk+k\right)=-d\)( *)

ta có: \(P_{\left(1\right)}=a+b+c+d\)

\(P_{\left(0\right)}=d\)

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> \(k^3-1;k^2-1;k-1\)là các số chẵn

\(\Rightarrow a\left(k^3-1\right)+b\left(k^2-1\right)+c\left(k-1\right)\) là số chẵn

\(=\left(ak^3+bk^2+ck\right)-\left(a+b+c\right)\)

mà a+b+c là số chẵn

\(\Rightarrow ak^3+bk^2+c\) là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

10 tháng 5 2021

Gọi nghiệm nguyên của P(x) là: k

ta có: ak3+bk2+ck+d=0ak3+bk2+ck+d=0

k.(ak2+bk+k)=−dk.(ak2+bk+k)=−d( *)

ta có: P(1)=a+b+c+dP(1)=a+b+c+d

P(0)=dP(0)=d

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> k3−1;k2−1;k−1k3−1;k2−1;k−1là các số chẵn

⇒a(k3−1)+b(k2−1)+c(k−1)⇒a(k3−1)+b(k2−1)+c(k−1) là số chẵn

=(ak3+bk2+ck)−(a+b+c)=(ak3+bk2+ck)−(a+b+c)

mà a+b+c là số chẵn

⇒ak3+bk2+c⇒ak3+bk2+c là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

4 tháng 5 2018

Ko biết là bạn có cần nữa ko.

Nhưng mình vẫn trả lời cho những bạn khác đang cần.

Do P(0) và P(1) lẻ nên ta có:

P(0)=d=> d là số lẻ

P(1)=a+b+c+d => a+b+c+d là số lẻ

Giả sử y là nghiệm nguyên của P(x). Khi đó:

P(y)=ay^3+by^2+cy+d=0

     =>ay^3+by^2+cy=-d

Mà d là số lẻ

=>y là số lẻ

Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)

                         =a(y^3-1)+b(y^2-1)+c(y-1)

Do y là số lẻ=>P(y)-P(1) là số chẵn(1)

Mà P(y)-P(1)= 0-a+b+c+d

                   =-a-b-c-d

Do a+b+c+d lẻ

=>-a-b-c-d lẻ 

Hay P(y)-P(1) là số lẻ(2)

Vì (1) và (2) mâu thuẫn

=> Giả sử sai

Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)

4 tháng 5 2018

 Chỗ: mà d là số lẻ bổ sung thêm cho mình: nên -d là số lẻ nha

hihi

15 tháng 4 2022

bạn tham khảo nha

Anser reply image

 
15 tháng 4 2022

d ở đâu ra vậy bạn

đề bài chỉ có a,b,c thôi mà

6 tháng 4 2018

Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
     Tính chẵn lẻ của bx2 phụ thuộc vào b
     Tính chẵn lẻ của cx phụ thuộc vào c
     d là số lẻ 
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên 
Hơi khó hỉu chút nhé ahihi
 

4 tháng 5 2018

Sai rồi bạn ơi

Mấy cái này mk kho bít sorry!!!!!!253564656464646474748949474626515466575757575665555

9 tháng 5 2022

easy

27 tháng 11 2021

\(2,\\ PT\Leftrightarrow6x^2+9y^2-\left(x^2+y^2\right)=20412\\ \text{Mà }20412⋮3;6x^2+9y^2⋮3\\ \Leftrightarrow x^2+y^2⋮3\Leftrightarrow x^2⋮3;y^2⋮3\Leftrightarrow x⋮3;y⋮3\)

Đặt \(\left\{{}\begin{matrix}x=3a\\y=3b\end{matrix}\right.\left(a,b\in Z\right)\Leftrightarrow5\left(3a\right)^2+8\left(3b\right)^2=20412\)

\(\Leftrightarrow9\left(5a^2+8b^2\right)=20412\\ \Leftrightarrow5a^2+8b^2=2268\)

Mà \(2268⋮3\Leftrightarrow5a^2+8b^2⋮3\Leftrightarrow a^2⋮3;b^2⋮3\Leftrightarrow a⋮3;b⋮3\)

Đặt \(\left\{{}\begin{matrix}a=3c\\b=3d\end{matrix}\right.\left(c,d\in Z\right)\Leftrightarrow9\left(5c^2+8d^2\right)=2268\Leftrightarrow5c^2+8d^2=252\)

Mà \(252⋮3\Leftrightarrow5c^2+8d^2⋮3\Leftrightarrow c^2⋮3;d^2⋮3\Leftrightarrow c⋮3;d⋮3\)

Đặt \(\left\{{}\begin{matrix}c=3k\\d=3q\end{matrix}\right.\left(k,q\in Z\right)\Leftrightarrow9\left(5k^2+8q^2\right)=252\Leftrightarrow5k^2+8q^2=28\)

\(\Leftrightarrow5k^2=28-8q^2\ge0\Leftrightarrow q^2\le\dfrac{28}{8}=3,5\\ \text{Mà }q\in Z\\ \Leftrightarrow-3\le q^2\le3\Leftrightarrow-1\le q\le1\)

\(\forall q=0\Leftrightarrow k^2=\dfrac{28}{5}\left(ktm\right)\\ \forall q=\pm1\Leftrightarrow k=\pm2\\ \Leftrightarrow\left(c;d\right)=\left(6;3\right);\left(-6;-3\right);\left(-6;3\right);\left(6;-3\right)\\ \Leftrightarrow\left(a;b\right)=\left(18;9\right)\left(-18;-9\right);\left(-18;9\right);\left(18;-9\right)\\ \Leftrightarrow\left(x;y\right)=\left(54;27\right);\left(-54;-27\right);\left(54;-27\right);\left(-54;27\right)\)

10 tháng 5 2021

Gọi nghiệm nguyên của P(x) là: k

ta có: ak3+bk2+ck+d=0ak3+bk2+ck+d=0

k.(ak2+bk+k)=−dk.(ak2+bk+k)=−d( *)

ta có: P(1)=a+b+c+dP(1)=a+b+c+d

P(0)=dP(0)=d

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> k3−1;k2−1;k−1k3−1;k2−1;k−1là các số chẵn

⇒a(k3−1)+b(k2−1)+c(k−1)⇒a(k3−1)+b(k2−1)+c(k−1) là số chẵn

=(ak3+bk2+ck)−(a+b+c)=(ak3+bk2+ck)−(a+b+c)

mà a+b+c là số chẵn

⇒ak3+bk2+c⇒ak3+bk2+c là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

1 tháng 6 2021

Xét đa thức P(x)=ax3+bx2+cx+dP(x)=ax3+bx2+cx+d

⇒P(0)=d⇒P(0)=d

      P(1)=ax+bx+c+dP(1)=ax+bx+c+d

Giả sử tồn tại tại số nguyên kk là nghiệm của đa thức P(x)P(x) nên P(k)=0P(k)=0

+) Với k là số chẵn

⇒P(k)−d=ak3+bk3+ck⇒P(k)-d=ak3+bk3+ck là số chẵn

Mà P(k)−d=P(k)−P(0)=−P(0)P(k)-d=P(k)-P(0)=-P(0) là số chẵn

⇒k⇒k là số chẵn  (loại)   (1)

+) Với k là số lẻ

⇒P(k)−P(1)=a(k3−1)+b(k2−1)+c(k−1)⇒P(k)-P(1)=a(k3-1)+b(k2-1)+c(k-1)

Vì kk là số lẻ nên k3−1;k2−1;k−1k3-1;k2-1;k-1 là các số chẵn

⇒P(k)−P(1)⇒P(k)-P(1) là số chẵn

⇒P(1)⇒P(1) là số chẵn

⇒k⇒k là số lẻ  (loại)   (2)

Từ (1), (2)

⇒⇒ Không tồn tại số nguyên kk sao cho P(k)=0P(k)=0

⇒P(x)⇒P(x) không thể có nghiệm là số nguyên   (đpcm)