Cho tam giác ABC có AB = 4 cm, AC = 3 cm, BC = 5 cm.
a) Chứng minh : tam giác ABC vuông
b) Trên AB lấy D sao cho AD = 3 cm. Chứng minh góc ACD = góc ADC
c) Tia phân giác góc CAD cắt BC tại M. So sánh MC và MD ?
d) Cho AM cắt CD tại K. Chứng minh AK < \(\frac{CB}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABM và ΔDBM có
BA=BD(gt)
\(\widehat{ABM}=\widehat{DBM}\)(BM là tia phân giác của \(\widehat{ABD}\))
BM chung
Do đó: ΔABM=ΔDBM(c-g-c)
Suy ra: \(\widehat{BAM}=\widehat{BDM}\)(hai góc tương ứng)
mà \(\widehat{BAM}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BDM}=90^0\)(đpcm)
b) Xét ΔABC vuông tại A có BC là cạnh huyền(BC là cạnh đối diện với \(\widehat{BAC}=90^0\))
nên BC là cạnh lớn nhất trong ΔABC(Định lí tam giác vuông)
Suy ra: BC>AC
`a)`
`Delta HAC` vuông tại `H` có :`hat(A_1)+hat(ACB)=90^0`
`hat(HAB)+hat(A_1)=90^0(kề bù)`
nên `hat(ACB)=hat(A_1)(đpcm)`
`b)`
`Delta HAC` vuông tại `H` có : `hat(A_1)+hat(ACH)=90^0`
hay `hat(A_1)+hat(ACB)=90^0`
`Delta ABC` vuông tại `A` có : `hat(B)=hat(ACB)=90^0`
nên `hat(B)=hat(A_1)`
Có `hat(IAC)=hat(A_1)+hat(A_2)`
`=1/2 hat(BAH)+hat(B)=1/2 hat(BCA) +hat(BAH)` (1)
`hat(C_1)=1/2 hat(ACB)(CI` là p/g của `hat(ACB)` `)`(2)
Từ `(1)` và `(2)=>hat(IAC)+hat(C_1)=hat(ABH)+hat(ACB)`
mà `hat(ABH)+hat(ACB)=90^0`
nên `hat(IAC)+hat(C_1)=90^0`
hay `hat(I_1)=90^0`
a. Xét tam giác vuông ABC
Theo định lý Py - ta - go ta có :
AB2 + AC2 = BC2
=> 32 + AC2 = 52
=> 9 + AC2 = 25
=> AC2 = 16
=> AC = 4
Vậy AB < AC < BC
b. Xét tam giác BAM và tam giác BDM ta có :
BM chung
Góc BAM = góc BDM ( = 90 độ )
BA = BD ( gt)
=> tam giác BAM = tam giác BDM ( ch - cgv)
=> MA = MD ( hai cạnh tương ứng )
Xét tam giác AMN và tam giác DMC
góc AMN = góc DMC ( đối đỉnh )
MA = MD ( cmt)
góc MAN= góc MDC ( = 90 độ )
=> Tam giác AMN = tam giác DMC
=> MN = MC
=> Tam giác MNC cân
b)
do tam giác ABC vuông tại A , mà ta có : D nằm giữa A , B , suy ra : AD + DB = AB
suy ra : 3 + DB = 4
suy ra : DB = 4-3=1 (cm)
Theo giả thiết ta có : AC =3 (cm)
và AB = 3 (cm)
suy ra : tam gác : ADC vuông cân tại A
vậy : góc ACD = góc ADC ( 2 góc ở đáy bằng nhau )
c )
nối M với D
Xét tam giác ADM và tam giác ACM có :
góc DAM = góc CAM ( AM tia p/g của góc A )
AM cạnh chung
AB = AC ( c/m câu a )
suy ra : tam giác ADM = tam giác ACM ( c-g-c)
suy ra :MD = MC ( 2 cạnh tương ứng )
xin lỗi nha tui ms làm đc vậy thôi mà không biết có đúng ko nữa
nếu sai thì xl bn nha
ngu
a) xét tam giác abc có bc^2=ac^2+ab^2 (định lý pi-ta-go )
5^2=3^2+4^2
25=9+16
vậy tam giác abc là tam giác vuông
2 câu còn lại tự túc
a: BC=8cm
BC>AC
=>góc A>góc B
b: XétΔABD có
AC vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
c: GB+2GC=GB+GA>AB