K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

vì a2> hoặc =0 => áp dụng BDT cauchy ta có:

a2+1/a2> hoặc = 2

=> GTNN của bt = 2 khi và chỉ khi a2=1/a2 <=> a=1

20 tháng 4 2018

a=1<2=>thỏa mãn yêu cầu bài toán

10 tháng 2 2017

Đề: \(1\le y\le x\le30\)GTLN \(P=\frac{x+y}{x-y}\)

Giải: Ta có:  \(\frac{x}{y}\)>1

Ta có \(P=\frac{x+y}{x-y}\)\(=\frac{\frac{x}{y}+1}{\frac{x}{y}-1}-1+1=\frac{2}{\frac{x}{y}-1}+1\)

Để P Lớn nhất =>  \(\frac{2}{\frac{x}{y}-1}\) lớn nhất => \(\frac{x}{y}-1\)nhỏ nhất => \(\frac{x}{y}\)nhỏ nhất 

Mà x>y nên đặt x=y+d

\(\Rightarrow\frac{x}{y}=\frac{y+d}{y}=1+\frac{d}{y}\), nên để  \(\frac{x}{y}\)nhỏ nhất thì d nhỏ nhất và y lớn nhất có thể nên d=1 và y=29

Hay \(\hept{\begin{cases}x=30\\y=29\end{cases}}\)

GTLN P=\(\frac{29+30}{30-29}=59\)

9 tháng 8 2019

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

Áp dụng BĐT cô si ta có:\(\frac{a}{b}+\frac{b}{a}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)

LÀm tương tự ta có:

\(\hept{\begin{cases}\frac{a}{b}+\frac{b}{a}\ge2\\\frac{a}{c}+\frac{c}{a}\ge2\\\frac{c}{b}+\frac{b}{c}\ge2\end{cases}}\Rightarrowđpcm\)

Vậy GTNN của S =6 khi a=b=c