tìm GtNN : A = I x - 1 I + I x -2 I + Ix - 3 I + Ix - 4 I + 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=|x+3|+|x-1|+|x-5|+20`
`=|x+3|+|x-5|+|x-1|+20`
Áp dụng `|A|+|B|>=|A+B|`
`=>|x+3|+|5-x|>=|x+3+5-x|=8`
Mà `|x-1|>=0`
`=>A>+20+8=28`
Dấu "=" `<=>x=1`
Có: lx-2l ≥0 ; lx+3l ≥0
Để A nhỏ nhất thì một trong lx-2l và lx+3l nhỏ nhất
TH1 : lx-2l nhỏ nhất. Mà lx-2l ≥0. Dấu = xảy ra <=> x=2
=> lx+3l = l2+3l = 5 => A = 0 + 5 + 10 = 15
TH2: lx+3l nhỏ nhất. Mà lx+3l ≥0. Dấu = xảy ra <=> x= -3
=> lx-2l = l-3-2l = 5 => A = 5 + 0 + 10 = 15
Vậy GTNN của A là 15
a) \(\left|\left|x-1\right|-1\right|=2\Rightarrow\orbr{\begin{cases}\left|x-1\right|-1=2\\\left|x-1\right|-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}\left|x-1\right|=3\\\left|x-1\right|=-1\left(l\right)\end{cases}}\)
TH1: x - 1 = 3
x = 4
TH2: x - 1 = - 3
x = - 2
b) Tương tự câu a.
c) \(\left|\left|2x-3\right|-x+1\right|=42-8\)
\(\left|\left|2x-3\right|-x+1\right|=34\)
TH1: \(\left|2x-3\right|-x+1=34\)
\(\left|2x-3\right|-x=33\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=33\Rightarrow x=36\) (tm)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=34\Rightarrow-3x=30\Rightarrow x=-10\left(tm\right)\)
TH2: \(\left|2x-3\right|-x+1=-34\)
\(\left|2x-3\right|-x=-35\)
Với \(x\ge\frac{3}{2}\), ta có \(2x-3-x=-35\Rightarrow x=-32\) (l)
Với \(x< \frac{3}{2}\), ta có \(3-2x-x+1=-34\Rightarrow-3x=38\Rightarrow x=\frac{38}{3}\left(l\right)\)
d) Tương tự câu c.
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
Ta thấy :
|x + 1| ≥ 0
|x + 2| ≥ 0
|x + 3| ≥ 0
...........
|x + 2014| ≥ 0
Cộng vế với vế ta được :
|x + 1| + |x + 2| + |x + 3| + ....... + |x + 2014| ≥ 0
=> 2015x ≥ 0 Mà 2015 > 0 => x ≥ 0
=> x + 1 + x + 2 + x + 3 + ....... + x + 2014 = 2015x
=> (x + x + ..... + x) + (1 + 2 + ....... + 2014) = 2015x
=> 2014x + 2014.2015/2 = 2015x
=> 2014x + 2029105 = 2015x
=> 2029105 = 2015x - 2014x
=> x = 2029105
Vậy x = 2029105
Đặt `B = |x - 1| + |x - 2| + |x - 3| + |x - 4|`
`= (|x - 1| + |x - 4|) + (|x - 2| + |x - 3|)`
`= (|x - 1| + |4 - x|) + (|x - 2| + |3 - x|)`
\(\Rightarrow B\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|\)
\(B\ge\left|3\right|+\left|1\right|=4\)
\(\Rightarrow A\ge4+15=19\)
hay MinA = 19
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x-1\right)\left(4-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-4\right)\le0\\\left(x-2\right)\left(x-3\right)\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1\le x\le4\\2\le x\le3\end{matrix}\right.\Rightarrow2\le x\le3\)
Vậy MinA = 19 tại \(2\le x\le3\).