K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

ta có: F(1) = G(2)

\(\Rightarrow2.1^2+a.1+4=2^2-5.2-b\)

\(2+a+4=4-10-b\)

\(6+a=-6-b\)

\(\Rightarrow a+b=-6-6\)

\(a+b=-12\Rightarrow a=-12-b\)

ta có: F(-1) = G(5)

\(\Rightarrow2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)

\(2-a+4=25-25-b\)

\(6-a=-b\)

\(\Rightarrow6-\left(-12-b\right)=-b\)

\(6+12+b=-b\)

\(b+b=-6-12\)

\(2b=-18\)

\(b=\left(-18\right):2\)

\(b=-9\)

\(\Rightarrow a+\left(-9\right)=-12\)

\(a=\left(-12\right)-\left(-9\right)\)

\(a=-3\)

KL:  a= -3 ; b= -9

Chúc bn học tốt !!!!!

Ta có \(f\left(1\right)=g\left(2\right)\)

hay \(2.1^2+a.1+4=2^2-5.2-b\)

           \(2+a+4\)    \(=4-10-b\)

           \(6+a\)          \(=-6-b\)

          \(a+b\)           \(=-6-6\)

          \(a+b\)           \(=-12\)                    \(\left(1\right)\)

Lại có \(f\left(-1\right)=g\left(5\right)\)

hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\) 

                 \(2-a+4\)          \(=25-25-b\)

                \(6-a\)                 \(=-b\)

              \(-a+b\)                \(=-6\)

                 \(b-a\)                \(=-6\)

                 \(b\)                      \(=-b+a\)                       \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:

   \(a+\left(-6+a\right)=-12\)

   \(a-6+a\)      \(=-12\)

      \(a+a\)         \(=-12+6\)

        \(2a\)            \(=-6\)

         \(a\)             \(=-6:2\)

         \(a\)             \(=-3\)

Mà \(a=-3\) 

⇒ \(b=-6+\left(-3\right)=-9\)

Vậy \(a=3\) và \(b=-9\)

 

 

 

 

 

                               

Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "

1 tháng 5 2018

Thay F(1) với x =1 vào thôi 

G(2) cũng vậy thay x=2 vào rồi cho 2 cái bằng nhau là tìm ra a 

1 tháng 5 2018

Ta có \(f\left(1\right)=g\left(2\right)\)

=> \(2+a+4=4-20-b\)

=> \(\left(2+a+4\right)-\left(4-20-b\right)=0\)

=> \(2+a+4-4+20+b=0\)

=> \(22+a+b=0\)

=> \(a+b=-22\)(1)

và \(f\left(-1\right)=g\left(5\right)\)

=> \(2-a+4=25-25-b\)

=> \(2-a+4=-b\)

=> \(2+4=a-b\)

=> \(a-b=6\)

=> \(a=6+b\)(2)

Thế (2) vào (1), ta có: \(6+b+b=-22\)

=> \(2b=-28\)

=> \(b=-14\)

và \(a=6+b=6-14=-8\)

AH
Akai Haruma
Giáo viên
1 tháng 6 2019

Lời giải:
\(\left\{\begin{matrix} f(1)=g(2)\\ f(-1)=g(5)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2.1^2+a.1+4=2^2-5.2-b\\ 2(-1)^2-a+4=5^2-5.5-b\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=-12\\ a-b=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-3\\ b=-9\end{matrix}\right.\)

Vậy...........

5 tháng 7 2019

em cảm ơn cô

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

10 tháng 3 2019

Có lẽ bạn nên sửa đề thành \(f\left(x\right)=...x^2+1...\)hoặc là \(g\left(x\right)=...\left(bx-1\right)...\)

Ta có: 

\(f\left(x\right)=ax^3+4x^3-4x+8=\left(a+4\right)x^3-4x+8\)

\(g\left(x\right)=x^3+4x\left(bx-1\right)+c-3=x^3+4bx^2-4x+c-3\)

Để \(f\left(x\right)=g\left(x\right)\Leftrightarrow\hept{\begin{cases}a+4=1\\4b=0\\c-3=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=-3\\b=0\\c=11\end{cases}}}\)

Kết luận

12 tháng 8 2016

bài 1

a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))

=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)

=\(-x^3\).\(y^2z^2\)

b)-54\(y^2\).b.x

=(-54.b).\(y^2x\)

=-54b\(y^2x\)

c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)

=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)

=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)

=\(\frac{-1}{2}x^6y^3\)

 

 

12 tháng 8 2016

Bài 3:

a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)

\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

b) 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)

\(f\left(1\right)=-8\)

 

\(f\left(x\right)=4x^4-16x^3-11x^2+15\)

\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)

\(f\left(-1\right)=24\)