a) Cho hai số tự nhiên có tổng bằng 162 và ƯCLN của chúng là 18. Tìm hai số đó.
b) Tìm số nguyên tố p sao cho: p+2 và p+4 cũng là các số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:* Nếu p=2 => p+2=2+2=4 là hợp số (trái với đề bài)
* Nếu p=3 => p+2=3+2=5 là số nguyên tố
=> p+4=3+4=7 là số nguyên tố
=> p=3 thỏa mãn đề bài
* Nếu p là số nguyên tố; p>3 => p có dạng 3k+1 hoặc 3k+2 (k ∈ N*)
* Nếu p=3k+1 => p+2=3k+1+2=3k+3=3(k+1)
Vì 3 ⋮ 3 => 3(k+1) ⋮ 3 => p+2 ⋮ 3, mà p+2 là số nguyên tố lớn hơn 3 => p+2 là hợp số (trái với đề bài)
* Nếu p=3k+2 => p+4=3k+2+4=3k+6=3k+3.2=3(k+2)
Vì 3 ⋮ 3 => 3(k+2) ⋮ 3 => p+4 ⋮ 3, mà p+4 là số nguyên tố lớn hơn 3 => p+4 là hợp số (trái với đề bài)
Vậy p=3 thỏa mãn đề bài
câu 1 : gọi 2 số đó là a;b
giả sử a > b và ƯCLN(a;b)=18
=> a= 18k ; b=18q (k>q;ƯCLN(k;q)=1)
=> 18k+18q = 162
18.(k+q) = 162
k+q = 162 : 18
k + q = 9
ta đi tìm cặp số (k;q) để k>q và ƯCLN(k;q)=1
Ta có bảng sau :
k | 8 | 7 | 5 |
q | 1 | 2 | 4 |
a | 144 | 126 | 90 |
b | 18 | 36 | 72 |
Vậy các cặp số (a;b) là : {(144;18);(126;36);(90;72)}
Bài 2 : c)
+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.
Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp :
- Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !
a, Do (a,b) = 6 => a = 6m; b = 6n với m,n ∈ N*; (m,n) = 1 và m ≤ n
Vì vậy ab = 6m.6n = 36mn, do ab = 216 => mn = 6. Do đó m = 1, n = 6 hoặc m = 2, n = 3
Với m = 1, n = 6 thì a = 6, b = 36
Với m = 2, n = 3 thì a = 12, b = 18
Vậy (a;b) là (6;36); (12;18)
b, Vì p là số nguyên tố nên ta xét các trường hợp của p
Trường hợp 1: p = 2, khi đó p+4 = 6; p+8 = 10 không là số nguyên tố (loại).
Trường hợp 2: p = 3, khi đó p+4 = 7; p+8 = 11 là hai số nguyên tố (thỏa mãn).
Trường hợp 3: p>3 nên p có dạng 3k+1; 3k+2 với k ∈ N*.
Nếu p = 3k+1 thì p+8 = 3k+1+8 = 3k+9 chia hết cho 3 và lớn hơn 3 nên p+8 không là số nguyên tố (loại).
Nếu p = 3k+2 thì p+4 = 3k+2+4 = 3k+6 chia hết cho 3 và lớn hơn 3 nên p+4 không là số nguyên tố (loại).
Kết luận. p = 3
a) Gọi 2 số đó là : a ; b \(\left(a;b\inℕ^∗\right)\)
Theo bài ra ta có :
\(a+b=162\)( 1 )
\(ƯCLN\left(a,b\right)=18\)( 2 )
\(a=18x;b=18y\left(\left(x,y\right)=1\right)\)( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) suy ra :
\(18x+18y=162\)
\(\Rightarrow18.\left(x+y\right)=162\)
\(\Rightarrow x+y=162:18=9\)
Vì \(\left(x,y\right)=1\)nên :
\(x+y\in\left\{\left(4+5\right);\left(5+4\right);\left(1+8\right);\left(8+1\right);\left(7+2\right);\left(2+7\right)\right\}\)
Vậy \(\left(a;b\right)\in\left\{\left(72;90\right),\left(90;72\right),\left(18;162\right),\left(162;18\right),\left(126;36\right),\left(36;126\right)\right\}\)
b) Nếu \(p=3\Rightarrow p+2=5;p+4=7\)( chọn )
Nếu \(p\)chia cho 3 dư 1 \(\Rightarrow p+2⋮3\)( loại )
Nếu \(p\)chia cho 3 dư 2 \(\Rightarrow p+4⋮3\)( loại )
Vậy \(p=3\)
a) theo cách làm của bạn trên
b) Nếu P=3=> p> p+2=5 ; p+4+7 9 (chọn) Nếu p chia cho 3 dư 1 => p+2 chia hết cho 3; Nếu p chia 3 dư 2=> p+4 chia hết cho 3. Vậy p=3 là hợp lý nhất.