Cho 193(a^5+b^5)=479c^5+d^5)(a,b,c,d là những số lẻ)Chứng minh rằng: a+b+c+d chia hết cho 240
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên chứng minh. Với mọi số n lẻ thì: \(n^5-n⋮240\)
Vì n lẻ nên ta chứng minh: \(A=\left(2k+1\right)^5-\left(2k+1\right)⋮240\)
Ta có:
\(\left(2k+1\right)^5-\left(2k+1\right)=8k\left(k+1\right)\left(2k+1\right)\left(2k^2+2k+1\right)\)
Chứng minh nó chia hết cho 16.
Vì \(k\left(k+1\right)⋮2\)
\(8k\left(k+1\right)\left(2k+1\right)\left(2k^2+2k+1\right)⋮16\)
Chứng minh nó chia hết cho 3:
Với \(k=3x\) thì \(A⋮3\)
Với \(k=3x+1\) thì \(2k+1=2\left(3x+1\right)+1=6x+3⋮3\)
Với \(k=3x+2\)thì \(k+1=3x+2+1=3x+3⋮3\)
\(\Rightarrow A⋮3\)
Chứng minh tương tự ta có được \(A⋮5\)
Vậy \(A⋮\left(16.3.5=240\right)\)
Quay lại bài toán ta có
\(a^5+b^5+c^5+d^5-a-b-c-d\)
\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)⋮240\)
Từ đây ta có ĐPCM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có a^5-a luôn chia hết cho 6
suy ra a^5+...+d^5 -2016 chia hết cho 6
dpcm