Chứng minh S : 1/21+1/22+1/23+...+1/80 không phải là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giúp mình câu này đi, mình cần gấp lắm, ai đúng mình k cho.
a)Vì Oy,Oz cùng thuộc 1 nửa mặt phẳng tia Ox
&góc xOy<góc xOz(70 độ<140 độ)
Nên Oy nằm giữa 2 tia Ox và Oz
Tcó:góc xOy + góc yOz=góc xOz
Tsố:70 độ + góc yOz=140 độ
góc yOz=140 độ - 70 độ=70 độ
b)+)Vì Ot là tia phân giác của góc yOz
Nên góc yOt=góc tOz=góc yOz×1/2=70 độ×1/2=35 độ
+)Vì Ot,Ox cùng thuộc 1 nửa mặt phẳng bờ Oz
& góc zOt<góc zOx(35 độ<140 độ)
Nên Ot nằm giữa 2 tia Ox&Oz
Tcó:góc xOt+góc tOz=góc xOz
Tsố:góc xOt+35 độ=140 độ
góc xOt =140 độ-35 độ=105 độ
Lời giải:
Dễ dàng thấy $S>0$
Mặt khác:
$S=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}< \frac{1}{101}+\frac{1}{101}+...+\frac{1}{101}=\frac{100}{101}<1$
Vậy $0< S< 1$ nên $S$ không phải số nguyên.
Hôm nay olm sẽ hướng dẫn các em giải dạng chứng minh một số không phải là một số nguyên thì các em cần sử dụng nguyên lý kẹp em nhé. Em cần chứng minh a < S < a + 1 ( a \(\in\) Z)
Sau đó em lập luận vì S nằm giữa hai số nguyên liên tiếp nên S không phải là số nguyên vì không tồn tại một số nguyên nằm giữa hai số nguyên liên tiếp.
Giải:
S = \(\dfrac{1}{101}\) + \(\dfrac{1}{102}\)+ \(\dfrac{1}{103}\)+ ...+ \(\dfrac{1}{200}\)
Xét dãy số: 101; 102;...; 200 có số số hạng là (200 - 101):1+1= 100
Mặt khác ta cũng có \(\dfrac{1}{101}\)> \(\dfrac{1}{102}\)> \(\dfrac{1}{103}\)> ...> \(\dfrac{1}{200}\)
⇒ \(\dfrac{1}{101}\) \(\times\) 100 > \(\dfrac{1}{101}\)+ \(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{200}\) > \(\dfrac{1}{200}\) \(\times\) 100
⇒ \(\dfrac{100}{101}\) > S > \(\dfrac{100}{200}\)⇒ \(\dfrac{100}{101}\) > S > \(\dfrac{1}{2}\) ⇒ 1 > S > 0 ⇒ S \(\notin\) Z (đpcm)
Vì 0 và 1 là hai số nguyên dương liên tiếp nên S không phải là số nguyên do không tồn tại một số nguyên nằm giữa hai số nguyên liên tiếp.
Giải
Đặt A=1/21+1/22+1/23+1/24+...+1/80
Ta có:
A=(1/21+1/22+...+1/40)+(1/41+...+1/80)
→A>(1/40+1/40+...+1/40)+(1/80+..+1/80)
→A>20/40+40/80
→A>1/2+1/2
→A>1 (1)
Lại có:
A=(1/21+1/22+...+1/40)+(1/41+...+1/80)
→A<(1/20+1/20+...+1/20)+(1/40+...+1/40)
→A<20/20+40/40
→A<2 (2)
Từ (1),(2)→1<A<2
→A không là số tự nhiên
Đặt A=1/21+1/22+1/23+1/24+...+1/80
Ta có:
A=(1/21+1/22+...+1/40)+(1/41+...+1/80)
→A>(1/40+1/40+...+1/40)+(1/80+..+1/80)
→A>20/40+40/80
→A>1/2+1/2
→A>1 (1)
Lại có:
A=(1/21+1/22+...+1/40)+(1/41+...+1/80)
→A<(1/20+1/20+...+1/20)+(1/40+...+1/40)
→A<20/20+40/40
→A<2 (2)
Từ (1),(2)→1<A<2
→A không là số tự nhiên