\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+....+\frac{101}{3^{101}}\)
So sánh Avới \(\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/3+2/3^2+3/3^3+4/3^4+...+101/3^101
3A=1+2/3^1+3/3^2+4/3^3+...+101/3^100
3A-A=(1+2/3^1+3/3^2+4/3^3+...+101/3^100)-(1/3+2/3^2+3/3^3+4/3^4+...+101/3^101)
2A=(1-101/3^101)+(2/3-1/3)+(3/3^2-2/3^2)+...+(101/3^100-99/3^100)
2A=1-101/3^101+(1/3+1/3^2+,,,+1/3^100)
(1/3+1/3^2+,,,+1/3^100) đặt B
B=1/3+1/3^2+,,,+1/3^100
3B=1+1/3+...+1/3^99
3B-B=(1+1/3+...+1/3^99)-(1/3+1/3^2+,,,+1/3^100)
2B=1-1/3^100
B=(1-1/3^100):2=1/2-1/3^100.2
thay B vào 2A ta đc
2A=1-101/3^101+B
2A=1-101/3^101+1/2-1/3^100.2
2A=(1+1/2)-(101/3^101+1/3^100.2)
2A=3/2-(101/3^101+1/3^100.2)
A=3/4-(101/3^101+1/3^100.2)<3/4
Giúp mình nha. Bài cuối cùng của đề toán dài 36 bài của mình đó
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
Nên từ đây => \(A< 1\) (ĐPCM)
a, A = \(\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)
\(A=\frac{1}{2}.\left(\frac{3.4....99}{4.5...100}\right)\)
\(A=\frac{1}{2}.\left(\frac{3}{100}\right)\)\(\)\(A=\frac{3}{200}\)
\(B=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)
\(B=\frac{2}{3}.\left(\frac{4.5...100}{5.6...101}\right)\)
\(B=\frac{2}{3}.\left(\frac{4}{101}\right)\)
\(B=\frac{8}{303}\)
\(A.B=\frac{8}{303}.\frac{3}{200}\)
\(A.B=\frac{1}{2525}\)
b, A = 1/2 x 3/100
B = 2/3 x 4/101
Ta có : 1 - 2/3 = 1/3; 1 - 1/2 = 1/2
MÀ 1/3 < 1/2 => 2/3 > 1/2 (1)
Ta có : 1 - 3/100 = 97/100
1 - 4/101 = 97/101
Mà 97/101 < 97/100 => 4/101 > 3/100 (2)
Từ (1) và (2) => B > A
a,
\(AB=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)
\(AB=\frac{\left[1\cdot3\cdot5\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)
b,
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\Leftrightarrow A< B\)
a) Ta có
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^6}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)\)
\(A=1-\frac{1}{2^7}\)
Do \(1-\frac{1}{2^7}< 1\Rightarrow A< 1\left(đpcm\right)\)