So sánh :
N = \(\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}\)và M =\(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét N ta có :
N = \(\frac{-7}{10^{2005}}\)+ \(\frac{-15}{10^{2006}}\)
N = \(\frac{-7}{10^{2005}}\)+ \(\frac{-7}{10^{2006}}\)+\(\frac{-8}{10^{2006}}\)
Xét M ta có :
M = \(\frac{-15}{10^{2005}}\)+\(\frac{-7}{10^{2006}}\)
M = \(\frac{-8}{10^{2005}}\)+\(\frac{-7}{10^{2005}}\)+ \(\frac{-7}{10^{2006}}\)
Vì \(\frac{-8}{10^{2006}}\)< \(\frac{-8}{10^{2005}}\) => N < M
Giải
\(\frac{-7}{10^{2005}}+\frac{-15}{10^{2016}}=\frac{-7.10}{10^{2005}.10}+\frac{-15}{10^{2006}}=\frac{-70}{10^{2006}}+\frac{-15}{10^{2006}}=\frac{-85}{10^{2006}}\left(1\right).\)
\(\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}=\frac{-15.10}{10^{2005}.10}+\frac{-7}{10^{2006}}=\frac{-150}{10^{2006}}+\frac{-7}{10^{2006}}=-\frac{157}{10^{2006}}\left(2\right).\)
Từ (1) và ( 2 ) => (1) > (2)
học tốt
Xét A ta có
A=\(\frac{-7}{10^{2005}}\) + \(\frac{-15}{10^{2006}}\)
A=\(\frac{-7}{10^{2005}}\) +\(\frac{-8}{10^{2006}}\) +\(\frac{-7}{10^{2006}}\)
Xét B ta có
B=\(\frac{-15}{10^{2005}}\) +\(\frac{-7}{10^{2006}}\)
B=\(\frac{-8}{10^{2005}}\) + \(\frac{-7}{10^{2005}}\) +\(\frac{-7}{10^{2006}}\)
Vì \(\frac{-8}{10^{2006}}\) >\(\frac{-8}{10^{2005}}\) nên A>B
Ta có
\(A=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}}=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
\(B=\frac{-7}{10^{2005}}+\frac{-8}{10^{2005}}+\frac{-7}{10^{2006}}\)
Vì \(\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\)
=>A>B
\(A=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
\(B=\frac{-7}{10^{2005}}+\frac{-8}{10^{2005}}+\frac{-7}{10^{2006}}\)
Vì \(\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\)
\(\Rightarrow A>B\)
A > B.
Tích nha bạn !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(N=\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}+\frac{-8}{10^{2006}}\)
\(M=\frac{-7}{10^{2005}}+\frac{-8}{10^{2005}}+\frac{-7}{10^{2006}}\)
Ta xét M và N, ta có: \(\frac{-7}{10^{2005}}+\frac{-7}{10^{2006}}\text{ chung}\)
Mà: \(\frac{-8}{10^{2006}}>\frac{-8}{10^{2005}}\Rightarrow M>N\)