K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

Bài này dễ mà bn, bn hãy tự làm đi

a: Ta có: ΔABC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

hay BM=CM

b: Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có 

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

d: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có

MB=MC

MH=MK

Do đó: ΔBHM=ΔCKM

19 tháng 1 2022

Tham khảo:
 

a: Ta có: ΔABC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

hay BM=CM

b: Ta có; ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có 

AM chung

ˆHAM=ˆKAMHAM^=KAM^

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK

d: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có

MB=MC

MH=MK

Do đó: ΔBHM=ΔCKM

a, tứ giác AKHM có

∠AHM= ∠AKM =∠HAK ( =90 )

⇒ tứ giác AKHM là hình chữ nhật 

b)Ta có tam giác ABC có M trug điểm BC

NH vuông góc vs AB=> MH// AC và MH =1/2 AC

Cmtt K là trung điểm AC

=> HK là đg tb của tam giác ABC=> HK//B M   Ta có HB= MK( Cùng=HA) => tứ giác BHKM là hình bình hành

c)Ta có EF là đường tb tam giác MHK

=> EF//HK 

EF// HK và EF=1/2 HK

GỌI O LÀ GIAO ĐIỂM CỦA HK VÀ AM

EF= HO= KO

Mà HO= HI+IO

=> KO=JO+KJ

Mà IO= JO=> HI= KJ

d) Dễ thấy EF =1/3 AB= 4 căn 3 /3

3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).a. Chứng minh tứ giác AKMH là hình chữ nhật.b. Chứng minh tứ giác BHKM là hình bình hành.c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm)....
Đọc tiếp

3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).

a. Chứng minh tứ giác AKMH là hình chữ nhật.

b. Chứng minh tứ giác BHKM là hình bình hành.

c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.

d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm). Tính độ dài EF.

4. Cho tam giác ABC vuông tại A , đường cao AH . Gọi D là điểm đối xứng với H qua AB,Elà điểm đối xứng với H qua AC . Gọi I là giao điểm của AB và DH, K là giao điểm của AC và EH .

a. Tứ giác AIHK là hình gì? Vì sao?

b. Chứng minh ba điểm D,E,A thẳng hàng.

c. Gọi M là trung điểm của BC. Chứng minh AM vuông góc IK. 

1
11 tháng 12 2021

a: Xét tứ giác AKMH có 

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

Do đó: AKMH là hình chữ nhật

23 tháng 12 2020

Bn tự vẽ hình nha

a, xét tứ giác AHMK có

góc MHA=90 độ( MH ⊥ Ab-gt)

góc MKA=90 độ( MK⊥ AC-gt)

góc HAK= 90 độ ( tam giác ABC vuông tại A-gt)

-> AHMK là hcn ( tứ giác có 3 góc vuông là hcn)

Tớ chỉ lm đc câu a thui nếu đúng like cho tớ nhabucminh

 

4 tháng 2 2021

bạn ko biết giải phần b,c à

12 tháng 2 2018

A B C M 4cm H K

a)Ta có: tam giác ABC là tam giác cân

\(=>AB=AC\)

Mà \(AB=4cm\)

=>>AC=4cm

b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)

c) Xét tam giác ABM và tgiác ACM có

AB=AC(cmt)

AM: chung

==>>tgiác ABM=tgiác ACM( ch-cgv)

d) Ta có: tam giác ABM=tgiác ACM(cmt)

=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)

Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)

\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)

=> AMvuông góc vs BC

e) Xét tgiác BMH và tgiác CMK có :

BM=CM( 2 cạnh  tương ứng , cmt(a))

\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)

==>>>tgiác BMH=tgiác CMK(ch-gn)

=>MH=MK( 2 cạnh tương ứng)