giai phương trình sau
|2x+5|=|1-3x|
giải dùm mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x^2-3x+1)(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1- 8x)(2x^2 +5x+1)=9x^2
<=> (2x^2+5x+1)^2 -8x(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)+(4x)^2=9x^2+16x^2
<=> (2x^2+5x+1 - 4x)^2=25x^2
<=> (2x^2+x+1)^2=25x^2
<=> (2x^2+x+1)^2 - 25x^2 =0
<=>(2x^2+x+1-5x)(2x^2+x+1+5x)=0
<=>(2x^2-4x+1)(2x^2+6x+1)=0
<=> (2x^2-4x+1)=0 => 2( x^2 - 2x + 1/2)=0
<=> x^2-2x +1/2 =0
<=> (x^2-2x+1) -1/2 =0
<=> (x-1)^2 =1/2 => x-1 =căn(1/2) => x=căn(1/2)+1
=> x-1=-(căn(1/2)) => x=- (căn(1/2)) +1
Hoặc 2x^2 +6x +1=0
<=> x^2 + 3x +1/2 =0
<=> (x^2 + 2*(1.5)x + (1.5)^2) -(1.5)^2+1/2 =0
<=> (x+1.5)^2 - 7/4 =0
<=> (x+1.5)^2 = 7/4 => x+1.5 = căn(7/4) => x=căn(7/4) -1.5
=> x+1.5 =- căn(7/4) => x=-căn(7/4) -1.5
nhớ thanks bạn (+_+)
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
a: 3x-4=0
=>3x=4
hay x=4/3
b: (x+2)(2x-3)=0
=>x+2=0 hoặc 2x-3=0
=>x=-2 hoặc x=3/2
Giải phương trình:
a) (x+2)3 - (x-2)3 = 12x(x-1) - 8
<=> (x2 + 3.x2.2 + 3.x.22 + 23) - (x2 - 3.x2.2 + 3.x.22 - 23) - [12x(x-1) - 8] = 0
<=> (x3 + 6x2 + 12x + 8) - (x3 - 6x2 + 12x - 8) - (12x2 - 12x - 8) = 0
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0
<=> 12x +32 = 0
<=> x = \(\frac{-32}{12}\) = \(-2\frac{2}{3}\)
Vậy phương trình có nghiệm duy nhất là \(-2\frac{2}{3}\)
b) (3x-1)2 - 5(2x+1)2 + (6x-3)(2x+1) = (x-1)2
<=> (9x2 - 6x + 1) - 5(4x2 + 4x + 1) + 3(2x - 1)(2x + 1) - (x2 - 2x +1) = 0
<=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0
<=> 9x2 - 6x + 1 - 20x2 - 20x - 5 + 12x2 - 3 - x2 + 2x -1 = 0
<=> -24x - 8 = 0
<=> x = \(\frac{-8}{24}\) = \(\frac{-1}{3}\)
Vậy phương trình có nghiệm duy nhất là \(\frac{-1}{3}\)
\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{5;-2\right\}\)
\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)
\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)
Câu d xem lại đề
\(2\left(3x-2\right)+\left(x-3\right)^2=0\)
\(\Rightarrow2\left(3x-2\right)=\left(x-3\right)^2\)
\(\Rightarrow6x-4=x^2-9\)
\(\Rightarrow6x-x^2=4-9\)
\(\Rightarrow6x-x^2=-5\)
\(\Rightarrow...\)
pn tự lm nka, mk ms lp 7 ò
\(\Leftrightarrow6x-4+x^2-6x+9=0\)
\(\Leftrightarrow x^2+5=0\)
\(\Leftrightarrow x^2=-5\)(vô lý)
Vậy ptrình vô nghiệm
Lập bảng xét dấu :
+) Nếu \(x\le\frac{-5}{3}\) thì \(|2x+5|=-2x-5\)
\(|1-3x|=1-3x\)
\(pt\Leftrightarrow-2x-5=1-3x\)
\(\Leftrightarrow-2x+3x=1+5\)
\(\Leftrightarrow x=6\)( loại )
+) Nếu \(\frac{-5}{2}< x< \frac{1}{3}\) thì \(|2x+5|=2x+5\)
\(|1-3x|=1-3x\)
\(pt\Leftrightarrow2x+5=1-3x\)
\(\Leftrightarrow2x+3x=1-5\)
\(\Leftrightarrow5x=-4\)
\(\Leftrightarrow x=\frac{-4}{5}\left(tm\right)\)
+) Nếu \(x\ge\frac{1}{3}\) thì \(|2x+5|=2x+5\)
\(|1-3x|=3x-1\)
\(pt\Leftrightarrow2x+5=3x-1\)
\(\Leftrightarrow2x-3x=-1-5\)
\(\Leftrightarrow-x=-6\)
\(\Leftrightarrow x=6\left(tm\right)\)
Vậy ....