nếu trung bình của 14 số nguyên dương khác nhau bằng 14 thì số lớn nhất trong các số đó bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
(Tổng các số n)/n = 56
Theo đề bài, ta có phương trình:
\(\frac{56n-68}{n-1}=55\)
<=> 56n - 68 = 55(n-1)
<=> 56 - 55n = 68 - 55
<=> n = 13
b. Tổng của 13 số nguyên dương đã cho: 56 x 13 = 728
Tổng của 12 số nguyên dương còn lại khi bỏ 68: 728 - 68 = 660
Mà số nguyên dương bé nhất là 1
=> Tổng của 11 số nguyên dương bé nhất (ko nhất thiết phải khác nhau) là 11.
Số nguyên dương lớn nhất cần tìm là: 660 - 11 = 649
2015 là số lẻ nên số các số lẻ là một số lẻ
Giả sử số các số lẻ này là 1 khi đo 48 số còn lại là số chẵn và tổng của 48 số chẵn nhỏ nhất là:
2+4+6+...+96=2352 > 2015
vậy số các số lẻ không thể là 1
ta thấy 2352-2015=337 mà: 96+94+92<337<96+94+92+90. nên ít nhất ta phải loại đi 4 số chẵn nữa khi đó còn lại 44 số chẵn nhỏ:
2+4+6+..+88=1980, mà 2015-1980=35
kiểm tra thấy 3+5+7+9+11=35. vậy giá trị nhỏ nhất của k là 5
Lời giải:
Giả sử nhóm trên có $m$ số nguyên dương phân biệt thỏa mãn, xếp theo thứ tự tăng dần là $a_1,a_2,....,a_m$
Ta có:
$a_1=\frac{2}{3}.\frac{a_1+a_2+....+a_m}{m}$
$3ma_1=2(a_1+a_2+....+a_m)$
$\geq 2[a_1+(a_1+1)+(a_1+2)+....+(a_1+m-2)+3a_1]$
$=2[(m+2)a_1+\frac{(m-1)(m-2)}{2}]=(2m+4)a_1+(m-1)(m-2)$
$\Rightarrow a_1(m-4)\geq (m-1)(m-2)$
Vì $m\geq 2$ nên $m-4\geq 0$
$a_1=\frac{a_m}{3}< \frac{36}{3}=12$
$\Rightarrow a_1\leq 11$
$\Rightarrow 11(m-4)\geq (m-1)(m-2)$
$\Leftrightarrow m^2-14m+46\leq 0$
$\Leftrightarrow -\sqrt{3}+7\leq m\leq \sqrt{3}+7$
Mà $m$ nguyên nên 6\leq m\leq 8$
Vậy $m_{\max}=8$
Ta sẽ chỉ ra bộ số thỏa mãn:
$(11,12,13,14,15,16,18,33)$
12 bạn ơi!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! sai thì thôi nhé
Tổng 3 số là: \(42.3=126\)
Tổng 2 số còn lại là: \(126-20=106\)
Vì cả ba số đều là số dương, khác nhau và số nhỏ nhất là 20 nên số lớn nhất có thể trong 2 số còn lại là:
\(106-21=85\)