K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta BHD\)vuông và \(\Delta CKD\)vuông có: \(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

BD = CD (AD là đường trung tuyến của \(\Delta ABC\))

=> \(\Delta BHD\)vuông = \(\Delta CKD\)vuông (ch.gn) (đpcm)

b/ Ta có \(\Delta BHD\)\(\Delta CKD\)(cmt) => BH = CK (hai cạnh tương ứng)

và AB = AC (\(\Delta ABC\)cân tại A)

=> AB - BH = AC - CK

=> AH = AK => \(\Delta AHK\)cân tại A (đpcm)

c/ Ta có \(\Delta AHK\)cân tại A (cmt) => \(\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\)(1)

và \(\Delta ABC\)cân tại A (gt) => \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AHK}=\widehat{B}\)ở vị trí đồng vị => HK // BC (đpcm)

d/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)

BD = CD (AD là đường trung tuyến của \(\Delta ABC\))

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) => \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng) => AD là đường phân giác của \(\Delta ABC\)(đpcm)

e/ Ta có \(\Delta ADB\)\(\Delta ADC\)(cmt) =>\(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)

Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)(hai góc kề bù)

=> \(\widehat{ADB}=\widehat{ADC}=90^o\)=> AD \(\perp\)BC

và AD là đường trung tuyến của \(\Delta ABC\)

=> AD là đường trung trực của BC

Mà HK // BC

=> AD là đường trung trực của HK (đpcm)

a: Xet ΔAHB và ΔAHC có

AH chung

HB=HC

AB=AC
=>ΔAHB=ΔAHC

b: Xét ΔNBC và ΔMCB có

NB=MC
góc NBC=góc MCB

CB chung

=>ΔNBC=ΔMCB

=>góc GBC=góc GCB

=>ΔGCB cân tại G

c: góc ECG+góc BCG=90 độ

góc GBC+góc GEC=90 độ

mà góc BCG=góc GBC

nên góc ECG=góc GEC
=>GC=GE=GB

=>G là trung điểm của BE
Xét ΔEBC có GD//CB

nên GD/CB=EG/EB=1/2

=>CB=2GD

a: Xét ΔBHD vuông tại H và ΔCKD vuông tại K có

BD=CD

góc B=góc C

Do đo:ΔBHD=ΔCKD

b: Ta có: AH+HB=AB

AK+KC=AC

mà AB=AC

và BH=CK

nên AH=AK

hay ΔAHK cân tại A

c: Xét ΔABC có AH/AB=AK/AC

nên KH//BC

d: Ta có:ΔABC cân tại A

mà AD là đường trung tuyến

nen AD là phân giác của góc BAC

e: Ta có: AH=AK

DH=DK

Do dó: AD là đường trung trực của HK

a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có 

AD chung

\(\widehat{HAD}=\widehat{EAD}\)

Do đó: ΔAHD=ΔAED

Suy ra: DH=DE

b: Ta có: ΔAED=ΔAHD

nên AE=AH

Xét ΔDHK vuông tại H và ΔDEC vuông tại E có 

DH=DE

\(\widehat{HDK}=\widehat{EDC}\)

Do đó: ΔDHK=ΔDEC

Suy ra: HK=EC

Ta có: AH+HK=AK

AE+EC=AC

mà AH=AE

và HK=EC

nên AK=AC

Xét ΔAKC có AK=AC

nên ΔAKC cân tại A

c: Ta có: ΔDHK=ΔDEC

nên DK=DC

mà EC<DC

nên EC<DK

a: Xét ΔABD vuông tại D và ΔACD vuông tại D có

AB=AC

AD chung

=>ΔABD=ΔACD

=>BD=CD

=>D là trung điểm của BC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD

=>AE=AF 

=>ΔAEF cân tại A

c: CI+2AD

=3IK+2*3/2*AK

=3*(IK+AK)>3AI