cho tam giác ABC nhọn, điểm M bất kì trên BC. đường trung trực của BM, CM cắt AB và AC lần lượt tại D và E. gọi S là điểm đối xứng của M qua DE, SM cắt đường cao AH tại K. chứng minh SAKB nt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AKCH có :
AD = DC ( D là trung điểm AC )
HD = DK ( K là điểm đối xứng của H qua D )
=> AKCH là hình bình hành (1)
Xét ∆ vuông AHC có :
HD là trung truyến
=> HD = AD = DC
Mà HD + DK = HK
AD + DC = AC
=> HK = AC (2)
Từ (1) và (2) => AKCH là hình chữ nhật
b) Xét ∆ABC có :
E là trung điểm AB
D là trung điểm BC
=> ED là đường trung bình ∆ABC
=> ED //BC
Xét ∆ABC có :
E là trung điểm AC
I là trung điểm BC
=> EI là đường trung bình ∆ABC
=> EI//AC , EI = \(\frac{1}{2}AC\)
Xét tứ giác EDCI có :
ED// IC ( I \(\in\)BC )
EI//DC ( D \(\in\)AC)
=> EDCI là hình bình hành
c) Vì ED //HI ( H , I \(\in\)BC )
=> EDIH là hình thang
Vì EI = \(\frac{1}{2}AC\)(cmt)
Mà HD = AD = DC (cmt)
=> HD = \(\frac{1}{2}AC\)
=> EI = HD
Mà EDIH là hình thang
=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )