Cho B = |1-2x|-(x-3) a) Rút gọn B
b) Với giá trị nào của x thì B = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 3x - 4 - ( 2x - 1) = 3x - 4 - 2x + 1 = x - 3
b) Ta có: x - 3 = 10 => x = 13
a: ĐKXĐ: \(x\in\left\{1;-1\right\}\)
b: \(A=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
\(a,ĐK:x\ne\pm1\\ b,A=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\\ c,x=-2\Leftrightarrow A=\dfrac{-2+1}{-2-1}=\dfrac{-1}{-3}=\dfrac{1}{3}\)
a ) A = |2x - 1| - (x - 5)
Ta có : \(\left|2x-1\right|=\hept{\begin{cases}2x-1\Leftrightarrow2x-1\ge0\Rightarrow x\ge\frac{1}{2}\\-\left(2x-1\right)\Leftrightarrow2x-1< 0\Rightarrow x< \frac{1}{2}\end{cases}}\)
TH1 : 2x - 1 ≥ 0 thì A = 2x - 1 - (x - 5) = 2x - 1 - x + 5 = x + 4
TH2 : 2x - 1 < 0 thì A = - 2x + 1 - x + 5 = - 3x + 6
b ) Để A = 4 <=> x + 4 = 4 hoặc - 3x + 6 = 4
TH1 : x + 4 = 4 => x = 0
TH2 : - 3x + 6 = 4 => x = 2/3
Vậy x = { 0;2/3 } thì A = 4
a, A=|2x-1|-(x-5)
A=|2x-1|-x+5
A=2x-1-x+5
A=2x-x+4
A=x+4
a) đK: \(x\ne0;2\)
B = \(\dfrac{3x-4}{x\left(x-2\right)}.\dfrac{x\left(x-2\right)}{x^2-4-x^2}=\dfrac{3x-4}{-4}=\dfrac{4-3x}{4}\) \(\dfrac{x-4+2x}{x\left(x-2\right)}:\dfrac{\left(x-2\right)\left(x+2\right)-x^2}{x\left(x-2\right)}\)
= \(\dfrac{3x-4}{x\left(x-2\right)}.\dfrac{x\left(x-2\right)}{x^2-4-x^2}=\dfrac{4-3x}{4}\)
b) Thay x = -2 (TMDK) vào B, ta có:
\(B=\dfrac{4-3.\left(-2\right)}{4}=\dfrac{4+6}{4}=\dfrac{5}{2}\)
c) Để \(\left|B\right|-2x=5\)
<=> \(\left|\dfrac{4-3x}{4}\right|-2x=5\)
TH1: \(x\le\dfrac{4}{3}\)
<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{4-3x}{4}\)
PT <=> \(\dfrac{4-3x}{4}-2x=5\)
<=> \(\dfrac{4-3x-8x}{4}=5\)
<=> \(4-11x=20\)
<=> x = \(\dfrac{-16}{11}\) (Tm)
TH2: \(x>\dfrac{4}{3}\)
<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{3x-4}{4}\)
PT <=> \(\dfrac{3x-4}{4}-2x=5\)
<=> \(\dfrac{3x-4-8x}{4}=5\)
<=> \(-5x-4=20\)
<=> \(x=\dfrac{-24}{5}\left(l\right)\)
d) Xét (2-x)B = \(\dfrac{\left(2-x\right)\left(4-3x\right)}{4}\) = \(\dfrac{3x^2-10x+8}{4}\)
= \(\dfrac{3\left(x-\dfrac{5}{3}\right)^2-\dfrac{1}{3}}{4}\)
Mà \(3\left(x-\dfrac{5}{3}\right)^2\ge\) 0
=> (2-x)B \(\ge\dfrac{\dfrac{-1}{3}}{4}=\dfrac{-1}{12}\)
Dấu "=" <=> x = \(\dfrac{5}{3}\left(tm\right)\)
e) Số nguyên âm lớn nhất là -1
Để B = -1
<=> \(\dfrac{4-3x}{4}=-1\)
<=> 4 - 3x = -4
<=> \(x=\dfrac{8}{3}\left(tm\right)\)
g)
TH1: \(x\le\dfrac{4}{3}\)
<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{4-3x}{4}\)
BDT <=> \(\dfrac{4-3x}{4}< 2x-4\)
<=> \(4-3x< 8x-16\)
<=> \(x>\dfrac{20}{11}\left(l\right)\)
TH2: \(x>\dfrac{4}{3}\)
<=> \(\left|\dfrac{4-3x}{4}\right|=\dfrac{3x-4}{4}\)
BDT <=> \(\dfrac{3x-4}{4}< 2x-4\)
<=> \(3x-4< 8x-16\)
<=> x > \(\dfrac{12}{5}\)
KHDK: \(x>\dfrac{12}{5}\)
a)
A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)
\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
MTC: 5(x-1)(x+1)
\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)
\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)
\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)
\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)
\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)
\(\Leftrightarrow10x+10\)
huyhijktyufhrye