A=[x^2+(2x+3)(x+1)-9]/9x^2-4.
Tim x nguyên để A đạt giá trị nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\dfrac{4x^2+2x^2+5x+3-9}{9x^2-4}=\dfrac{6x^2+5x-6}{9x^2-4}=\dfrac{\left(3x-2\right)\left(2x+3\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{2x+3}{3x+2}\)
b, Ta có \(6x+9⋮3x+2\Leftrightarrow2\left(3x+2\right)+5⋮3x+2\Rightarrow3x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
3x+2 | 1 | -1 | 5 | -5 |
x | loại | -1 | 1 | loại |
A= 4x2+(2x+3)(x+1)-9/ 9x2-4
A=4x2+2x2+3x+2x+3-9/9x2-22
A= 6x2+5x-6/(3x)2-22
A= 6x2-4x+9x-6/ (3x-2)(3x+2)
A= 2x(3x-2)+3(3x-2)/ (3x-2)(3x+2)
A= (3x-2)(2x+3)/(3x-2)(3x+2)
A=2x+3/3x+2
để a nguyên thì 2x +3 chia hết cho 3x+2
3(2x+3) chia hết cho 3x+2
6x+9 chia hết cho 3x+2
6x+4+5 chia hết cho 3x+2
6x+4 chia hết cho 3x+2
<=> 5 chia hết cho 3x+2
bạn lập bảng ra thì ra được x={1;-1}
NHẦM ĐỀ Ạ. KHÔNG PHẢI \(4^2\)mà là \(4x^2\)
Xin lỗi vì sự nhầm lẫn này ạ!
Mọi người làm thì ĐKXĐ x \(\ne\pm\frac{2}{3}\)
Rút gọn thì ra A= \(\frac{2x+3}{3x+2}\)
a.\(A=\frac{3x^2-x+3}{3x+2}=\frac{3x^2+2x-3x-2+5}{3x+2}=x-1+\frac{5}{3x+2}\)
là số nguyên khi 3x+2 là ước của 5 hay \(\orbr{\begin{cases}3x+2=\pm1\\3x+2=\pm5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
b.\(B=\frac{2x^3-9x^2+10x+4}{2x-1}=\frac{2x^3-x^2-8x^2+4x+6x-3+7}{2x-1}=x^2-4x+3+\frac{7}{2x-1}\)
là số nguyên khi 2x-1 là ước của 7 hay \(\orbr{\begin{cases}2x-1=\pm7\\2x-1=\pm1\end{cases}}\Leftrightarrow x\in\left\{-3,0,1,4\right\}\)
a: ĐKXĐ: x<>2; x<>3
\(Q=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+1}{x-3}\)
b: Để P<1 thì P-1<0
=>\(\dfrac{x+1-x+3}{x-3}< 0\)
=>x-3<0
=>x<3
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.