Cho tam giác ABC vuông tại A , tia phân giác của góc B cắt AC tại D . Từ D vẽ DE vuông góc với BC ( E thuộc BC)
a) CM : tam giác ABD và tam giác EBD
b) Kéo dài DE cắt đường thẳng AB tại K . CM : AK = EC
c) CM : BD vuông góc KC
d) Vẽ EM vuông góc AC ( M thuộc AC ) , AH vuông góc BC ( H thuộc BC )
CM : AE là đường trung trực của HM
A) Xét ΔABD và ΔEBD có:
+) AB=BE (gt)
+) góc ABD= góc EBD (do BD là phân giác góc B)
+) BD chung
=> ΔABD = ΔEBD (c-g-c)
b)
Qua C kẻ đường thẳng vuông góc với BD tại H.
Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B
=> ΔBCF cân tại B (tính chất)
=> BC= BF (điều phải chứng minh)
c)
Xét ΔABC và ΔEBF có:
+) AB = EB (gt)
+) góc B chung
+) BC= BF (câu b)
=> ΔABC = ΔEBF (c-g-c)
d)
Từ ý a, ΔABD = ΔEBD (c-g-c)
=> góc BAD= góc BED = 90
=> DE ⊥ BC
Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D
=> D là trực tâm
=> FD ⊥ BC
=> DE trùng với FD
=> D,E,F thẳng hàng