Cho tam giác ABC vuông tại A đường cao AH, H thuộc BC
a) CM tam giác ABC đồng dạng tam giác HAC
b) CM AH2= BH.HC
c) Kẻ phân giác BE của tam giác ABC E thuộc AC. Biết BH=9cm,HC=16 CM, tính độ dài AE,EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC\(\sim\)ΔHAC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
Do đó: ΔHBA\(\sim\)ΔHAC
Suy ra: HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đòng dạng với ΔHAC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
c: \(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
AC=căn 16*25=20(cm)
BE là phân giác
=>AE/AB=CE/BC
=>AE/3=CE/5=(AE+CE)/(3+5)=20/8=2,5
=>AE=7,5cm; CE=12,5cm
câu d dùng tính chất đường phân giác trong tam giác là ra mà em!
EM là phân giác của tam giác ABE=>BM/AM=BE/AE
EN là phân giác của tam giác BEC =>CN/BN=EC/BE
=> BM/AM * CN/BN*AE/EC= BE/AE * EC/BE*AE/EC=1
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/AB
=>BA^2=BH*BC
b: \(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
AC=căn 16*25=20(cm)
S=15*20/2=150cm2
c: AD/DC=HA/HC=12/16=3/4
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
2: Xét ΔBAE vuông tại A và ΔBHI vuông tại H có
góc ABE=góc HBI
=>ΔBAE đồng dạng với ΔBHI
3: góc AEI=góc BEA=góc BIH
góc BIH=góc AIE
=>góc AEI=góc AIE
=>AE=AI
a) Xét tam giác ABC và tam giác HBA có:
\(\widehat{BAC}=\widehat{BHA}=90^o\)
Góc B chung
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)
b)
Xét tam giác ABC và tam giác HAC có:
\(\widehat{BAC}=\widehat{AHC}=90^o\)
Góc C chung
\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g-g\right)\)
c) Từ câu a và b ta có : \(\Delta HBA\sim\Delta HAC\)
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow HA^2=HB.HC=9.16=144\)
\(\Rightarrow HA=12\left(cm\right)\)
Khi đó áp dụng định lý Pi-ta-go ta có:
\(AB^2=BH^2+AH^2=9^2+12^2\Rightarrow AB=15\left(cm\right)\)
\(AC^2=CH^2+AH^2=16^2+12^2\Rightarrow AC=20\left(cm\right)\)
BC = BH + HC = 9 + 16 = 25 (cm)
Áp dụng tính chất tia phân giác trong tam giác ta có:
\(\frac{AE}{EC}=\frac{AB}{BC}=\frac{15}{25}=\frac{3}{5}\)
\(\Rightarrow AE=\frac{3}{8}\times20=7,5\left(cm\right)\)
\(\Rightarrow EC=20-7,5=12,5\left(cm\right)\)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc EBH
góc ADE=90 độ-góc ABD
góc EBH=góc ABD
=>góc AED=góc ADE
=>AE=AD
a) Xét ΔCHA và ΔCAB ta có:
\(\widehat{C}\) chung
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\Rightarrow\Delta CHA\)∼\(\Delta CAB\left(g.g\right)\)
b)Xét ΔABC vuông tại A, áp dụng địn lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2\)
\(=20^2-16^2\)
\(=144\)
\(\Rightarrow AB=\sqrt{144}=12cm\)
vì ΔCHA∼ΔCAB(cmt)
\(\Rightarrow\dfrac{AB}{AH}=\dfrac{AC}{CH}=\dfrac{BC}{AC}hay\dfrac{12}{AH}=\dfrac{16}{CH}=\dfrac{20}{16}=\dfrac{5}{4}\)
Suy ra:
\(AH=\dfrac{12.4}{5}=9,6cm\)
\(CH=\dfrac{16.4}{5}=12,8cm\)
Xét ΔAHC có AD là phân giác ta có:
\(\dfrac{AH}{HD}=\dfrac{AC}{DC}=\dfrac{AH+AC}{CH}hay\dfrac{9,6}{HD}=\dfrac{16}{DC}=\dfrac{16+9,6}{12,8}=2\)
\(\Rightarrow DC=\dfrac{16}{2}=8cm\)
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
c: Xét ΔBHI vuông tại H và ΔBAE vuông tại A có
góc ABE=góc HBI
=>ΔBHI đồng dạng với ΔBAE
d: góc AIE=góc BIH
góc AEI=góc BIH
=>góc AIE=góc AEI
=>AI=AE
a) Xét tam giác ABC và tam giác HAC có :
\(\widehat{BAC}=\widehat{AHC}\left(=90^o\right)\)
Chung \(\widehat{ACB}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g) (đpcm)
b) Xét tam giác ABC và tam giác HBA có :
\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)
Chung \(\widehat{ABC}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA (g-g)
Mà tam giác ABC đồng dạng với tam giác HAC ( câu a )
Suy ra tam giác HBA đồng dạng với tam giác HAC
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Leftrightarrow HA^2=HB\times HC\left(đpcm\right)\)
c) Do \(AH^2=BH\times HC\)
\(\Leftrightarrow AH^2=9\times16\)
\(\Leftrightarrow AH^2=144\)
\(\Leftrightarrow AH=\sqrt{144}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Py-ta-go cho tam giác AHC vuông tại H ta được :
\(AH^2+HC^2=AC^2\)
\(\Leftrightarrow12^2+16^2=AC^2\)
\(\Leftrightarrow AC^2=400\)
\(\Leftrightarrow AC=\sqrt{400}\)
\(\Leftrightarrow AC=20\left(cm\right)\)
Ta có : \(BC=BH+HC=9+16=25\left(cm\right)\)
Do BE là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{9+25}=\frac{AC}{34}=\frac{20}{34}=\frac{10}{17}\)
\(\Rightarrow\frac{EC}{BC}=\frac{10}{17}\Leftrightarrow\frac{EC}{25}=\frac{10}{17}\Leftrightarrow EC=\frac{250}{17}\left(cm\right)\)
Lại có : \(AE=AC-EC=20-\frac{250}{17}=\frac{90}{17}\left(cm\right)\)
Vậy độ dài đoạn thẳng EC là \(\frac{250}{17}\) cm ; AE là \(\frac{90}{17}\) cm