Bài 3:
Cho đường tròn (O) báng kính R và một dây BC cố định. Goi A là điểm chính giữa của cung nhỏ BC. Lấy điểm M bất kỳ trên cung nhỏ AC, kẻ tia Bx vuông góc với tia MA ở I và cắt tia CM tại D.
a) Chứng minh góc AMD = góc ABC và MA là tia phân giác của góc BMD.
b) CHứng minh A là tâm đường tròn ngoại tiếp DBCD và góc BDC có độ lớn không phụ thuộc vào vị trí điểm M.
c) Tia DA cắt BC tại E và cắt đường tròn (O) tại điểm thứ hai F, chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác BEF.
d) Chứng minh tích P = AE. AF không đổi khi M di động. Tính P theo bán kính R và góc ABC = a