Cho S = 1-3+32-33+...+398-399
a) CM S là bội của -20
b) Tính S từ đó => 3100 chia cho4 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
S = 1 - 3 + 32 - 33+...+398 - 399
S = 30 - 31 + 32 - 33+...+ 398 - 399
xét dãy số: 0; 1; 2; 3;...;99
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)
100 : 4 = 25
Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì:
S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)
S = - 20+...+ 396.(1 - 3 + 32 - 33)
S = - 20 +...+ 396.(-20)
S = -20.( 30 + ...+ 396) (đpcm)
b,
S = 1 - 3 + 32 - 33+...+ 398 - 399
3S = 3 - 32 + 33-...-398 + 399 - 3100
3S + S = - 3100 + 1
4S = - 3100 + 1
S = ( -3100 + 1): 4
S = - ( 3100 - 1) : 4
Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}=\left(1-3+3^2-3^3\right)+3^4\left(1-3+3^3-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)=\left(-20\right)+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)=\left(-20\right)\left(1+3^4+...+3^{96}\right)⋮20\)
Ta có: \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)
\(=-20\cdot\left(1+...+3^{96}\right)⋮20\)
S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)
S = (-20) + 34 . (-20) +.... + 396 . (-20)
S = (-20) . (1 + 34 +...+ 396)
\(\Rightarrow\)S \(⋮\) 20
(Ko bt có đúng ko)
*KO CHÉP MẠNG*
b ) mình đang ngĩ . mình làm ý a nha
S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + .... + ( 396 - 397 + 398 - 399 )
= ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + .... + 396 ( 1 - 3 + 32 - 33 )
= ( 1 - 3 + 9 - 27 ) + 34 ( 1 - 3 + 9 - 27 ) + ... + 396 ( 1 - 3 + 9 - 27 )
= - 20 + 34 ( - 20 ) + .... + 396 ( - 20 )
= - 20( 1 + 34 + .... + 396 ) chia hết cho - 20 ( đpcm )