Cho dãy số gồm 2015 số nguyên dương đc sắp xếp như sau : a1, a2 ...a2015 . Chứng tỏ rằng luôn tìm được ở dãy số trên 1 số hoặc tổng của 1 số số chia hết cho 2015. ( a1 là số a thứ 1 nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
#include <bits/stdc++.h>
using namespace std;
long long a[100],n,i,j,tam;
int main()
{
cin>>n;
for (i=1; i<=n; i++)
cin>>a[i];
for (i=1; i<=n-1; i++)
for (j=i+1; j<=n; j++)
if (a[i]<a[j]) swap(a[i],a[j]);
for (i=1; i<=n;i++)
cout<<a[i]<<" ";
return 0;
}
Xét tổng Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0 Suy ra có ít nhất một trong 7 số là số chẵn |
là số chẵn
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Ta có 15 = 1 + 2 + 3 + 4 + 5
Vì a1 là số nguyên dương nên \(a_1+a_2\ge3\)điều trên xảy ra khi \(a_1=1\)và \(a_2=a_1+1\)
Tương tự với \(a_1+a_2+a_3+a_4+a_5=a_1+\left(a_1+1\right)+...+\left(a_1+a_4\right)\)
\(=5a_1+10⋮15\)
Theo nguyên lý Dirichlet thì trong 2015 số nguyên dương sẽ tồn tại ít nhất 134 số chia hết cho 15 nếu \(a_1=15\)
Nếu các số nguyên dương trên có giá trị tương đương nhau thì \(a_1+a_2+...+a_{2015}=2015a_n\)
Vậy trong nguyên lý Dirichlet thì có thể tồn tại ít nhất 134 cặp số có tổng chia hết cho 15 với \(a_n\)nhỏ nhất là 1
ygtutr