TỔNG CỦA 3 SỐ LÀ 900 . NẾU LẤY ST NHẤT BỚT 1, ST BA THÊM 1 THÌ LÚC ĐÓ ST NHẤT = 3/4 ST HAI . ST HAI = 4/5 ST BA . TÌM 3 SỐ ĐÓ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ST1 + ST2 + ST3 = 2040 (1)
Theo bài ra:
ST1 = 3/5.ST3 => ST3 = 5/3.ST1
ST3 = 3/2.ST2 <=> 5/3.ST1 = 3/2.ST2 => ST2 = 10/9.ST1
(1) <=> ST1 + 10/9.ST1 + 5/3.ST1 = 2040 <=> 34.ST1 = 18360 => ST1 = 540
ST + SBT = 630 : 5 = 126
Suy ra đây là bài toán tổng hiệu
1. Gấp số bị trừ lên 4 lần và giữ nguyên số trừ thì Hiệu cũ tăng lên 3 lần số bị trừ
Hiệu mới hơn hiệu cũ là: 445 - 100 = 345
Số bị trừ là: 345 : 3 = 115
Số trừ là: 115 - 100 = 15
2. Số bị trừ = Hiệu + số trừ
Vậy Tổng của SBT; ST ; hiệu bằng 2 lần số bị trừ và bằng 200
Số bị trừ bằng 200 : 2 = 100
Vậy : Hiệu + Số trừ = 100
Hiệu - Số trừ = 44
Bài toán : tổng - hiệu:
Hiệu bằng (100 + 44): 2 = 72
Số trừ là: 100 - 72 = 28
Nếu bớt ST1 đi 1 đ/v;ST3 thêm 1đ/v thì tổng vẫn không đổi.
Nếu ST1 =3/4 ST2;ST2 = 4/5 ST3 suy ra ST1 là 3 phần,ST2 là 4 phần,ST3 là 5 phần.
Ta có sơ đồ:
ST1 /____/____/____/
ST2/____/____/____/____/ Tổng 900
ST3/____/____/____/____/____/
ST1 là:
900 / (3+4+5) x 3 + 1 = 226
ST2 là:
900 / (3+4+5) x 4 = 300
ST3 là:
900 - 300 - 226 = 374
Đ/s:ST1:226
ST2:300
ST3:374
Gọi 3 số cần tìm là a, b, c. Tổng của 3 số là 900=> a+b+c=900(*). Số thứ 1 thêm 1, số thứ 3 bớt 1 thì tổng không thay đổi.
Theo đề, nếu bớt số thứ nhất đi 1 thì số thứ nhất =\(\frac{3}{4}\) số thứ hai=> \(\left(a-1\right)=\frac{3b}{4}\)=> \(b=\frac{\left(a-1\right)\cdot4}{3}\)(1)
Và số thứ ba thêm 1 thì số thứ hai= \(\frac{4}{5}\)số thứ ba=> \(b=\frac{4\left(c+1\right)}{5}\)(2)
Từ (1) và (2)=> \(\frac{a-1}{3}=\frac{c+1}{5}\)=> 5a-5=3c+3=> \(\frac{5a-8}{3}=c\)
Thay \(b=\frac{\left(a-1\right)\cdot4}{3}\)và \(c=\frac{5a-8}{3}\)vào (*), ta có: \(a+\frac{\left(a-1\right)\cdot4}{3}+\frac{5a-8}{3}=900\)
=> \(\frac{3a+4a-4+5a-8}{3}=900=>12a-12=2700=>12a=2712=>a=226\)
Thay \(a=226\)vào \(b=\frac{\left(a-1\right)\cdot4}{3}\)ta được: \(b=\frac{\left(226-1\right)\cdot4}{3}=300\)
Và thay \(a=226\)vào \(c=\frac{5a-8}{3}\)ta được: \(c=\frac{5\cdot226-8}{3}=374\)
Vậy 3 số cần tìm là \(a=226;b=300;c=374.\)