K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

Mỗi phương trình trong hệ là một đường thẳng

Để hpt này vô nghiệm thì 2 đường thẳng phải song song

Đưa về dạng đường thẳng nha xin lỗi vì mình ko ghi cái hệ đc

=> \({a\over a'}={b \over b'} ≠{c \over c'}\) ( a/a'=b/b'≠c/c')

1/m=m≠2/3

=> m=±1

Chắc đúng cái này là thầy dạy mình đó :)

3 tháng 4 2018

2 thui !

13 tháng 2 2018

b) \(\hept{\begin{cases}x+my=m+1\left(1\right)\\mx+y=2m\left(2\right)\end{cases}}\)

từ \(\left(2\right)\) ta có: \(y=2m-mx\)  \(\left(3\right)\)

thay (3) vào (1) ta được  \(x+m\left(2m-mx\right)=m+1\)

\(\Leftrightarrow x+2m^2-m^2x=m+1\)

\(\Leftrightarrow x\left(1-m^2\right)=m+1-2m^2\)

\(\Leftrightarrow x\left(1-m^2\right)=-m^2+1\)

\(\Leftrightarrow x\left(m^2-1\right)=m^2-1\)  \(\left(4\right)\)

để hpt có nghiệm duy nhất, pt (4) pải có nghiệm duy nhất  

\(\Leftrightarrow m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

từ (4) ta có  \(x=\frac{m^2-1}{m^2-1}=1\)

từ (3) ta có: \(y=2m-m\)

\(y=m\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;m\right)\)

theo bài ra  \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)

\(\Leftrightarrow m\ge1\)

vậy....

13 tháng 2 2018

a) khi m = 2 hpt có dạng 

\(\hept{\begin{cases}x+2y=3\\2x+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3-2y\\2\left(3-2y\right)+y=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-2y\\6-4y+y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-3y=-2\\x=3-2y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{2}{3}\\x=\frac{5}{3}\end{cases}}\)

vậy....

12 tháng 4 2018

a) với m=2 thì \(hpt\Leftrightarrow\hept{\begin{cases}x+y=1\left(1\right)\\2x+y=4\left(2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\left(\left(2\right)-\left(1\right)\right)\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

b) \(\hept{\begin{cases}x+y=1\left(a=1;b=1;c=1\right)\\mx+y=2m\left(a^,=m;b^,=1;c^,=2m\right)\end{cases}}\)

hãy sử dụng CT và thế a, b, c, a,, b,, c, rồi tìm ra m

  • có vô số nghiệm nếu \(\frac{a}{a^,}=\frac{b}{b^,}=\frac{c}{c^,}\)
  • vô nghiệm nếu \(\frac{a}{a^,}=\frac{b}{b^,}\ne\frac{c}{c^,}\)
  • có 1 nghiệm duy nhất nếu\(\frac{a}{a^,}\ne\frac{b}{b^,}\)
12 tháng 4 2018

Cảm ơn bạn nha!!

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1

7 tháng 6 2020

a,  2x -y= 0 x+y =6

 X=

2 tháng 5 2021

Bài này lần đầu em gặp, có gì sai góp ý cho em nhé, check hộ em \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)x-mx=1-m\\mx+y=m+1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-m\\m\left(1-m\right)+y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-m\\m-m^2+y=m+1\end{cases}}\)

\(\left(2\right)\Rightarrow-m^2+y=1\Leftrightarrow y=1+m^2\)

mà : \(x+y=4\)hay \(1-m+1+m^2=4\Leftrightarrow m^2-m-2=0\)

Ta có : \(\Delta=1-4\left(-2\right)=9>0\)

\(m_1=\frac{1-3}{2}=-1;m_2=\frac{1+3}{2}=2\)

TH1 : Thay m = -1 vào hệ phương trình trên ta được 

\(\hept{\begin{cases}-2x+y=2\\-x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}-x=2\\-x+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=-2\end{cases}}}\)

TH2 : Thay m = 2 vào hệ phương trình trên ta được : 

\(\hept{\begin{cases}x+y=2\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}-x=-1\\x+y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy ...