Cho a,b thỏa mãn \(4a^2+b^2+4ab-4a-6b+1=0\)
Tìm Min, Max của P=2a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a2 + 9b2 - 20a + 6b + 26 = 0 <=> ( 2a - 5 )2 + ( 3b + 1 )2 = 0 <=> a = 5/2 ; b = -1/3
5a2 + b2 - 2a + 4ab + 1 = 0 <=> ( 2a + b )2 + ( a - 1 )2 = 0 <=> a = 1 ; b = -2
1) Ta có 4a2 + 9b2 - 20a + 6b + 26 = 0
<=> (4a2 - 20a + 25) + (9b2 + 6b + 1) = 0
<=> (2a - 5)2 + (3b + 1)2 = 0
<=> \(\hept{\begin{cases}2a-5=0\\3b+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=-\frac{1}{3}\end{cases}}\)
Vậy a = 5/2 ; b = -1/3
2) Ta có 5a2 + b2 - 2a + 4ab + 1 = 0
<=> (4a2 + 4ab + b2) + (a2 - 2a + 1) = 0
<=> (2a + b)2 + (a - 1)2 = 0
<=> \(\hept{\begin{cases}2a+b=0\\a-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-2\\a=1\end{cases}}\)
Vậy b = -2 ; a = 1
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
2.
\(P=\left(\dfrac{a+6}{3\left(a+3\right)}-\dfrac{1}{a+3}\right).\dfrac{27a}{a+2}=\left(\dfrac{a+3}{3\left(a+3\right)}\right).\dfrac{27a}{a+2}=\dfrac{27a}{3\left(a+2\right)}=\dfrac{9a}{a+2}\)
ĐKXĐ là :
\(a\ne0;-3;-2\)
Vs a = 1 ta có:
=> P=3
1.
\(M=\left(\dfrac{2a}{2a+b}-\dfrac{4a^2}{\left(2a+b\right)^2}\right):\left(\dfrac{2a}{\left(2a-b\right)\left(2a+b\right)}-\dfrac{1}{2a-b}\right)=\left(\dfrac{4a^2+2ab-4a^2}{\left(2a+b\right)^2}\right).\left(\dfrac{\left(2a+b\right)\left(2a-b\right)}{b}\right)=\dfrac{2a.\left(2a-b\right)}{\left(2a+b\right)}\)
Ta có 1/4(a+b)=a^2+b^2-ab>=(a+b)^2-3((a+b)^2/4)=(a+b)^2/4
=>0=<a+b=<1
Mặt khác A=<20(a+b)(a^2+b^2-ab)-6((a+b)^2/2)+2013
=>A=<20(a+b)((a+b)/4)-3(a+b)^2+2013=2(a+b)^2+2013=<2015
=>Amin=2015 khi a=b=1/2
Áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(4a^2+9b^2\right)\left(2^2+2^2\right)\ge\left(2a.1-3b.2\right)^2=\left(4a-6b\right)^2=1\)
\(\Rightarrow4a^2+9b^2\ge\dfrac{1}{8}\).
Đẳng thức xảy ra khi \(a=\dfrac{1}{8};b=\dfrac{-1}{12}\).
Ta có: \(\frac{a}{1+4b^2}=\frac{a\left(1+4b^2\right)-4ab^2}{1+4b^2}=a-\frac{4ab^2}{1+4b^2}\ge a-\frac{4ab^2}{2\sqrt{4b^2.1}}=a-\frac{2ab^2}{2b}=a-ab\)(bđt cosi)
CMTT: \(\frac{b}{1+4a^2}\ge b-ab\)
=> P \(\ge a+b-2ab=4ab-2ab=2ab\)
Mặt khác ta có: \(a+b\ge2\sqrt{ab}\)(cosi)
=> \(4ab\ge2\sqrt{ab}\) <=> \(2ab\ge\sqrt{ab}\)<=> \(4a^2b^2-ab\ge0\) <=> \(ab\left(4ab-1\right)\ge0\)
<=> \(\orbr{\begin{cases}ab\le0\left(loại\right)\\ab\ge\frac{1}{4}\end{cases}}\)(vì a,b là số thực dương)
=> P \(\ge2\cdot\frac{1}{4}=\frac{1}{2}\)
Dấu "=" xảy ra <=> a = b = 1/2
Vậy MinP = 1/2 <=> a = b= 1/2
Ta có: \(a+b=4ab\le\left(a+b\right)^2\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)-1\right]\ge0\)
Mà \(a+b>0\Rightarrow a+b\ge1\)
Áp dụng BĐT Cô-si, ta có: \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}=\left(a-\frac{4ab^2}{1+4b^2}\right)+\left(b-\frac{4a^2b}{1+4a^2}\right)\)\(\ge\left(a-\frac{4ab^2}{4b}\right)+\left(b-\frac{4a^2b}{4a}\right)=\left(a+b\right)-2ab=\left(a+b\right)-\frac{a+b}{2}=\frac{a+b}{2}\ge\frac{1}{2}\)
Đẳng thức xảy ra khi a = b = 1/2