K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

a)   Xét  \(\Delta DBH\) và     \(\Delta DHA\)có:

\(\widehat{BDH}=\widehat{HDA}=90^0\)

\(\widehat{DBH}=\widehat{DHA}\)  cùng phụ với góc DHB

suy ra:   \(\Delta DBH~\Delta DHA\)

\(\Rightarrow\)\(\frac{DH}{DA}=\frac{BH}{HA}\)   (1)

C/m tương tự ta có:   \(\Delta HAB~\Delta HCA\)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{BH}{HA}\)  (2)

Từ (1) và (2) suy ra:    \(\frac{DH}{DA}=\frac{AB}{AC}\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

25 tháng 8 2016

a, Xét ΔABH và ΔAHD có

       Góc A chung

        Góc ADH=Góc AHB=90° 

=> ΔABH ~ΔAHD(g.g)

=> AH/AB=AD/AH

=> AB.AD=AH²(1)

Xét ΔAEH và ΔAHC có:

Góc A chung 

Góc AEH = góc AHC

=>ΔAEH~ΔAHC(g.g)

=> AE/AH=AH/AC

=>AE.AC=AH²(2)

Từ (1);(2) => AD.AB=AE.AC(đpcm)

b, vì ΔABC vuông tại A có AI là trung tuyến ứng với cạnh huyền=> BI=IC=AI

=> ΔAIC cân tại I

=>góc IAC =góc ICA

Ta cũng có ΔBIA cân tại I =>góc IBA=góc BAI

Mà góc BAI =góc AED(cùng phụ)

         => góc IBA=góc AED

Mà ABI+góc ACI= 90°

=>    gócAED + góc IAC=90° 

      => DEvuông góc vs AI

c, 

27 tháng 8 2016

mình làm câu c,d nek bạn

c, ta có\(\Delta\)HEC vuông tại E( vì E là hình chiếu của H nên Góc E=90 độ)

        => EN là đường trung tuyến ứng vs cạnh huyền

        => EN=NH=NC( vì N là trung điểm của HC)

         => \(\Delta\)ENC cân tại N(NE=NC cmt)

        => góc NEC=góc NCE(hai góc đáy) (1)

     chứng minh tương tự trong \(\Delta\)BMD cân tại M

       => góc DBM=góc MDB(2)

ta có \(\Delta\)ABC vuông tại A nên góc DBM+góc NCE=90 độ

                                            =>góc MDB+ góc NEC(vì (1);(2))    (3)

      và \(\Delta\)\(\Delta\)
DAE vuông tại A nên góc ADE+góc AED=90 độ (4)

từ (3);(4)=>góc BDM+góc ADE=90 độ

              => góc MDH+góc HDE=90 độ ( 180 độ - (MDH+HDE))

              => DM\(\perp\) DE (*)

     và    góc DEA+ góc NEC=90 độ

            => góc HDE+góc HEN= 90 độ 

           => DE\(\perp\) EN (**)

từ (*); (**)=> MDEN là hình thang (DM // EN vì cùng \(\perp\)vs DE)

d, Ta có DHEA là hình chữ nhật (góc D= góc H =Góc E=90 độ)

=> OH=OA=OD=OE (t/c đường chéo hcn)

=> OH=OA=HA/2

ta có HM+HN=BM+NC(vì BM=MH; NH=NC)

    =>  MH+HN=BC/2=>MN=1/2 BC

 diện tích \(\Delta\)ABC =1/2. AH. BC

 diện tích \(\Delta\)MON=1/2.OH.MN=1/2.1/2AH.1/2BC

Vậy (S\(\Delta\) MON)/(S\(\Delta\)ABC)=(1/2.AH.BC)/(1/8 AH.BC)

                                         =4

Mình nghĩ là làm như vậy, có gì bạn góp ý nhahihi

 

 

22 tháng 6 2021

d) Ta có: \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow HDAE\) là hình chữ nhật

\(\Rightarrow DE=AH=\sqrt{BH.HC}=\sqrt{4.9}=6\left(cm\right)\)

Ta có: \(DM\parallel EN (\bot DE)\) và \(\angle MDE=\angle DEN=90\)

\(\Rightarrow MDEN\) là hình thang vuông

Vì \(\Delta BDH\) vuông tại D có M là trung điểm BH 

\(\Rightarrow MD=\dfrac{1}{2}BH=\dfrac{1}{2}.4=2\left(cm\right)\)

Vì \(\Delta HEC\) vuông tại E có M là trung điểm CH 

\(\Rightarrow EN=\dfrac{1}{2}CH=\dfrac{1}{2}.9=\dfrac{9}{2}\left(cm\right)\)

\(\Rightarrow S_{DENM}=\dfrac{1}{2}.\left(DM+EN\right).DE=\dfrac{1}{2}.\left(2+\dfrac{9}{2}\right).6=\dfrac{39}{2}\left(cm^2\right)\)

 

15 tháng 10 2021

b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE\(\sim\)ΔACB

Suy ra: \(\widehat{ADE}=\widehat{ACB}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

a. Vì $H, D$ đối xứng nhau qua $AB$ nên $AB$ là đường trung trực của $DH$

$\Rightarrow AD=AH(1)$

Vì $H,E$ đối xứng qua $AC$ là đường trung trực của $HE$

$\Rightarrow AH=AE(2)$

Từ $(1);(2)\Rightarrow AD=AE$ nên tam giác $ADE$ cân tại $A$

b.

Vì $AB$ là trung trực $DH$ nên:

$AD=AH, MD=MH$

Do đó dễ cm $\triangle ADM=\triangle AHM$ (c.c.c)

$\Rightarrow \widehat{MHA}=\widehat{MDA}=\widehat{EDA}(*)$

Tương tự: $\triangle ANH=\triangle ANE(c.c.c)

$\Rightarrow \widehat{NHA}=\widehat{NEA}=\widehat{DEA}(**)$
Tam giác $ADE$ cân tại $A$ nên $\widehat{EDA}=\widehat{DEA}(***)$

Từ $(*); (**); (***)\Rightarrow \widehat{MHA}=\widehat{NHA}$

Do đó $HA$ là phân giác $\widehat{MHN}$

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Làm nốt câu c,d.

c. Sửa thành $BN, CM, AH$ đồng quy

Gọi $T$ là giao $AH, DN$ và $R$ là giao $DN, BC$

Xét tam giác $ADT$ và $NHT$ có:
$\widehat{ATD}=\widehat{NTH}$ (đối đỉnh)

$\widehat{D_2}=\widehat{H_2}=\widehat{H_1}$

$\Rightarrow \triangle ADT\sim \triangle NHT$ (g.g)

$\Rightarrow \frac{AT}{DT}=\frac{NT}{HT}$

$\Rightarrow \triangle ATN\sim \triangle DTH$ (c.g.c)

$\Rightarrow \widehat{N_1}=\widehat{THD}(3)$

Mặt khác:

Vì $\triangle ADT\sim \triangle NHT$ 

$\Rightarrow \widehat{DAT}=\widehat{HNT}=\widehat{HND}$

Mà $\widehat{DAT}+\widehat{DBH}=180^0$ (do $\widehat{ADB}=\widehat{AHB}=90^0$)

$\Rightarrow \widehat{HND}=\widehat{DAT}=180^0-\widehat{DBH}=\widehat{RBD}$

Xét tam giác $RBD$ và $RNH$ có:

$\widehat{R}$ chung

$\widehat{RBD}=\widehat{HND}=\widehat{RNH}$

$\Rightarrow \triangle RBD\sim \triangle RNH$ (g.g)

$\Rightarrow \frac{RB}{RD}=\frac{RN}{RH}$

$\Rightarrow \triangle RDH\sim \triangle RBN$ (c.g.c)

$\Rightarrow \widehat{RHD}=\widehat{RNB}(4)$

Từ $(3);(4)$ suy ra:

$\widehat{N_1}+\widehat{RNB}=\widehat{THD}+\widehat{RHD}$

$\Leftrightarrow \widehat{ANB}=\widehat{AHB}=90^0$

$\Rightarrow BN\perp AC$

Tương tự $CM\perp AB$

Tam giác $ABC$ có $BN\perp AC, CM\perp AB, AH\perp BC$ nên ba đường này đồng quy (3 đường cao trong tam giác)

d. Đã làm ở phần c.

P/s: Bài toán này nếu làm bằng kiến thức lớp 9 thì khá nhẹ nhàng, nhưng dùng kiến thức lớp 8 thì mình thấy hơi dài.

 

NV
2 tháng 8 2021

a. Ta có tứ giác AIHK là hình chữ nhật (tứ giác có 3 góc vuông)

\(\Rightarrow\widehat{IKH}=\widehat{IAH}\) 

Mà \(\widehat{IAH}=\widehat{KCH}\) (cùng phụ \(\widehat{ABC}\))

\(\Rightarrow\widehat{IKH}=\widehat{KCH}\)

b.

Gọi D và E lần lượt là trung điểm IH và HK

\(\Rightarrow\) MD và NE lần lượt là đường trung bình các tam giác BIH và HKC

\(\Rightarrow\left\{{}\begin{matrix}MD\perp HI\\MD=\dfrac{1}{2}BI\end{matrix}\right.\) và \(\left\{{}\begin{matrix}NE\perp HK\\NE=\dfrac{1}{2}CK\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}S_{MIH}=\dfrac{1}{2}MD.IH=\dfrac{1}{2}.\dfrac{1}{2}BI.IH=\dfrac{1}{2}S_{BIH}\\S_{NHK}=\dfrac{1}{2}NE.HK=\dfrac{1}{2}.\dfrac{1}{2}CK.HK=\dfrac{1}{2}S_{HCK}\end{matrix}\right.\)

Đồng thời AIHK là hình chữ nhật \(\Rightarrow S_{IHK}=\dfrac{1}{2}S_{AIHK}\)

Do đó:

\(S_{MNKI}=S_{MIH}+S_{NHK}+S_{IHK}=\dfrac{1}{2}\left(S_{BIH}+S_{AIHK}+S_{HCK}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)

NV
2 tháng 8 2021

undefined