Cho \(\Delta ABC\)cân tại A có \(\widehat{A}=36^o\)Biết AB=a và BC=b (a>b)
Chứng minh: \(b^2+ab-a^2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nối A và D lại, ta đc: ΔABD & ΔADC
Ta có: D là trung điểm BC => BD=DC
Xét ΔABD & ΔADC có:
AB=AC(gt) ; BD=DC ; AD=AD
=> ΔADB = ΔADC
1a. Xét △ABD và △ACD có:
\(AB=BC\left(gt\right)\)
\(\hat{BAD}=\hat{CAD}\left(gt\right)\)
\(AD\) chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).
2a. Xét △ABD và △EBD có:
\(AB=BE\left(gt\right)\)
\(\hat{ABD}=\hat{EBD}\left(gt\right)\)
\(BD\) chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
c/ Xét △ABI và △EBI có:
\(AB=BE\left(gt\right)\)
\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)
\(BI\) chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)
\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)
Vậy: \(BD\perp AE\)
Kẻ đường cao AH của tam giác ABC. Do tam giác ABC cân tại A nên H là trung điểm BC và AH cũng là phân giác góc A.
Vậy thì ta có: \(HC=\frac{b}{2};\widehat{HAC}=18^o\)
Khi đó ta có: \(HC=AC.\sin18^o\Rightarrow\frac{b}{2}=a.\sin18^o\)
\(\Rightarrow b=2a.\sin18^o\)
Vậy thì \(b^2+ab-a^2=4a^2\sin^218^o+2b^2\sin18^o-a^2\)
\(=a^2\left(4\sin^218^o+2\sin18^o-1\right)=0\)