K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2018

A B C H

Kẻ đường cao AH của tam giác ABC. Do tam giác ABC cân tại A nên H là trung điểm BC và AH cũng là phân giác góc A.

Vậy thì ta có: \(HC=\frac{b}{2};\widehat{HAC}=18^o\)

Khi đó ta có: \(HC=AC.\sin18^o\Rightarrow\frac{b}{2}=a.\sin18^o\)

\(\Rightarrow b=2a.\sin18^o\)

Vậy thì \(b^2+ab-a^2=4a^2\sin^218^o+2b^2\sin18^o-a^2\)

\(=a^2\left(4\sin^218^o+2\sin18^o-1\right)=0\)

17 tháng 12 2021

a) Nối A và D lại, ta đc: ΔABD & ΔADC

Ta có: D là trung điểm BC => BD=DC

Xét ΔABD & ΔADC có:

AB=AC(gt) ; BD=DC ; AD=AD

=> ΔADB = ΔADC

17 tháng 12 2021

1a. Xét △ABD và △ACD có:

\(AB=BC\left(gt\right)\)

\(\hat{BAD}=\hat{CAD}\left(gt\right)\)

\(AD\) chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).

 

2a. Xét △ABD và △EBD có:

\(AB=BE\left(gt\right)\)

\(\hat{ABD}=\hat{EBD}\left(gt\right)\)

\(BD\) chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
 

c/ Xét △ABI và △EBI có:

\(AB=BE\left(gt\right)\)

\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)

\(BI\) chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)

\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)

Vậy: \(BD\perp AE\)

12 tháng 8 2018

a\(^3\)+ b\(^3\)= 3ab\(^2\)

=> a.a.a + b.b.b = (3a + 3b)\(^2\)

=> đpcm